Meeting on Issues Relating to the California Phase 3 Reformulated Gasoline Regulations

August 18, 2000

California Environmental Protection Agency

Agenda

Introduction
Overview of issues and progress
Presentation from others
Schedule next meeting

Issues

- CaRBOB regulation
 - Tank Transition Effects
- Small refiners
- Denatured ethanol specifications
- + Commingling
- + Permeation
- Predictive Model and EMFAC2000
- Oxygenate waiver status
- Driveability index
- + Sulfur in gasoline

CARBOB

- Amendments to CaRFG regulations to assure the practical blending of ethanol downstream of refininery and to facilitate the importation of gasoline.
- CaRBOB model for certification of ethanol blends prior to the addition of ethanol
- Storage tanks transition
- Proposal to the Board by October 2000

Tank Transitions Between CARBOBs and Non-Oxygenated CARFG

Small Refiners

 Amendments to the ARB's diesel fuel regulations to incorporate a mechanism for small refiners to fully mitigate any increased emissions associated with CaRFG3 small refiner previsions

Proposal to the Board by October 2000

Proposed Specifications for Denatured Ethanol and Denaturants

	Specifications	Specifications	
	for Denatured Ethanol	<u>for Denaturants</u>	
Sulfur, ppm	10 - 15 (?)		

Benzene, vol.%	0.05	1.1%	
Olefin, vol.%	0.50	10%	
Aromatics, vol.%	1.7	35%	

Denatured Ethanol Specifications

- Sulfur Limit would be enforced by testing the denatured ethanol.
- The limits for benzene, olefins, and aromatics contents of denaturant are limited to the CaRFG3 Cap limits.
- Benzene, olefins, and aromatics limits would be enforced by determining the concentrations of these compounds in the denaturant and calculating the concentrations corresponding to the amount of denaturant added.
- Requires product transfer documents with description of ethanol and denaturant.

Sulfur Levels in Denatured Ethanol for Different Addition Levels of Denaturant

Undenatured	Denatured Ethanol¹		
Ethanol	<u>2.0% Denaturant</u>²	<u>4.8% Denaturant</u> ²	
8	9	10	
9	10	11	
10	11	12	
11	12	13	
12	13	14	
13	14	15	

- **1** Assumes that the denaturant has a sulfur level of 60 ppm.
- 2 Federal regulations and ASTM standards require a minimum denaturant concentration of 2% and limits the maximum concentration at 4.8%.

Commingling Effects

- Investigate effects from commingling EtOH blends and non-oxygenated gasoline
- Recommendations to Board by December 2001

Permeation Emissions

- Contract in place with Harold Haskew & Associates
- Update the Board in October 2000 on the potential increase in hydrocarbon emissions from material permeability with the use of ethanol in gasoline
- Report to the Board on the results of permeability testing by December 2001

Predictive Model and EMFAC 200

- EMFAC 2000 inventories approved (pending resolution of a couple of outstanding issues) by the ARB in May 2000
 - Resolution of the outstanding issues were not be in time to meet the deadline for the adoption of the CaRFG3 Regulations

Oxygen Waiver

Continue to pursue the U. S. EPA oxygen waiver
 Continue to support request to U. S. EPA to waive the application of the federal RFG year-round 2.0 wt.% minimum oxygen requirement for federal RFG areas

Driveability Index

- Transmitted to the U. S. EPA the board's recommendation to adopt a nationwide DI standard to assure the adequate emissions performance of existing and advanced technology motor vehicles
- To evaluate driveability characteristics of in-use CaRFG3 to determine if adequate
- Report to the Board by 2004

Sulfur Content

- + Evaluate CaRFG3 sulfur levels
- Complete evaluation with CEC on impacts of near zero sulfur levels in gasoline (including impacts on supply and cost of production)
- + To be completed in 2004

Other Issues

- Work with local air quality management districts and local communities to address potential impacts from an increase use of cargo tank trucks to transport ethanol
- Provide the Board with update every 6 months on the of the implementation of the directives

Other Meeting Items

Presentation from others
Schedule next meeting

TERMINAL TANK TRANSITIONS

Terminal Tank Transitions

+ 0-OXY CaRFG to CaRBOB

CaRBOB to 0-OXY CaRFG

CaRBOB "A" to CaRBOB "B"

Properties of Fuels and CaRBOBs

 Fuels used in the ARB's waiver request dated Dec. 24, 1999.

-(0, 2, 2.7, and 3.5 wt.% oxygen)

- Lower sulfur fuels derived from the MathPro December 7, 1999 analysis
 - (2 and 2.7 wt.% oxygen)
- Use WSPA CaRBOB model (7/20/00 version) to obtain a CaRBOB for each fuel
- Use linear model to calculate properties of transition
 CaRBOBs or non-oxy fuels

Tank Transition Procedure

Assumptions

+ Heel levels before transition:

- terminal tank reduced to 10%, 25%, or
 50% of capacity
- At each tank turnover, terminal tank is filled to capacity with the target CaRBOB or fuel
- The transition CaRBOB from each tank turnover is blended with ethanol at the level of the target fuel

Compliance of Transition Fuel

Predictive model standards.
-(hydrocarbons, NOx, and toxics)
RVP

Octane not considered

Example Calculation of Properties of a Transition CARBOB

	CARBOB (5.7)	CARBOB (7.7)	Transition* CARBOB
Aromatic HC, vol%	26.5	27.0	27.0
Benzene, vol%	0.80	0.75	0.76
Olefins, vol%	6.3	4.3	4.5
Sulfur, ppm	20	14	14.6
T50, deg F	217	213	213
T90, deg F	307	313	312
Oxygen, wt.%	0	0	0
RVP, psi	5.6	6.0	5.9

* 10 % CARBOB 5.7 (heel) + 90% CARBOB 7.7 (target CaRBOB)

Number of Tank Turnovers Not Meeting Predictive Model Standards

	Heel Amount	10%	25%		50%
01%)	CaRFG to CaRBOB				
	0 to 5.7	1 (THC)	1 (THC)	3	(THC)
	0 to 7.7	1 (THC)	1 (THC)	3	(THC)
	0 to 10	1 (NOx)	1 (NOx, THC)	3	(THC, NOx)
t (v	CaRBOB to CaRBOB				
Conten	5.7 to 7.7 (20 & 14 ppm sulfur)	1 (NOx)	1 (NOx)	3	(NOx)
	5.7 to 7.7 (14 & 12 ppm sulfur)	0	0	1	(NOx)
<u>ol (</u>	5.7 to 10	1 (NOx)	2 (NOx)	>3	(NOx)
Jan	7.7 to 10	1 (NOx)	2 (NOx)	>3	(NOx)
Ett	7.7 to 5.7	0	0	1	(THC)
	10 to 5.7	0	1 (THC)	3	(THC)
	10 to 7.7	0	0	1	(THC)
	Any CaRBOB to Non-oxy CaRFG	No emissio	ns increase on any ta	ank tu	rnover

Note: Assumes tank filled to capacity for each tank turnover.