California Environmental Protection Agency

Air Resources Board

Vapor Recovery Test Procedure

PROPOSEDMODIFIED: TP-201.1

Volumetric Efficiency for Phase I Systems at Dispensing Facilities

Adopted: April 12, 1996 Amended: ____

Proposed 15-day changes are shown with <u>underline for additions</u> and <u>strikeout for deletions</u>.

California Environmental Protection Agency Air Resources Board

Vapor Recovery Test Procedure

TP-201.1

VOLUMETRIC EFFICIENCY OF PHASE I SYSTEMS AT DISPENSING FACILITIES

Definitions common to all certification and test procedures are in:

D-200 Definitions for Vapor Recovery Procedures

For the purpose of this procedure, the term "CARB" refers to the State of California Air Resources Board, and the term "Executive Officer" refers to the CARB Executive Officer, or his or her authorized representative or designate.

1. PURPOSE AND APPLICABILITY

1.1 The purpose of this procedure is to quantify the Phase I volumetric efficiencies during bulk gasoline deliveries at gasoline distribution facilities (GDF). It is applicable for those facilities which are not equipped with post processor systems, such as Hirt or Hasstech Phase II systems.

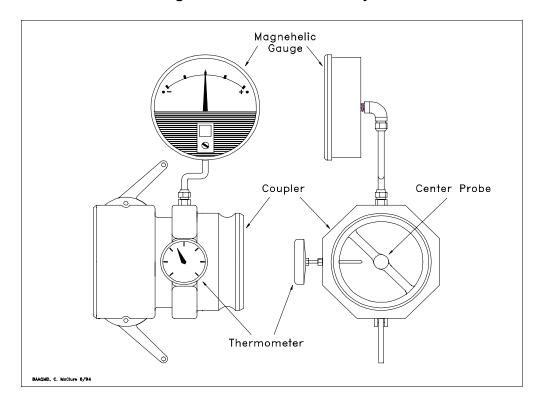
2. PRINCIPLE AND SUMMARY OF TEST PROCEDURE

2.1 During a bulk gasoline delivery, the volume of gasoline delivered from the cargo tank to the GDF storage tank is recorded. The volume of gasoline vapor discharged from the vent pipe(s) of the storage tank(s) is measured. From these parameters the Phase I volumetric efficiency is determined. If a Phase I system fails to meet 98% volumetric efficiency, the gasoline cargo tank shall be tested for compliance with the year-round (daily) standards for gasoline cargo tanks, contained in CP-204, to determine if the failure could be attributed to the cargo tank.

3. BIASES AND INTERFERENCES

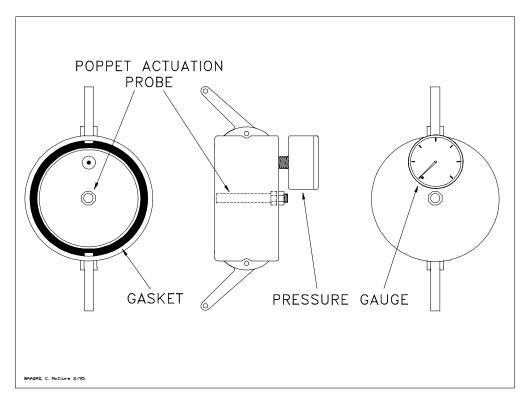
- **3.1** Any vapor leaks exceeding 100 % of the Lower Explosive Limit (LEL) during the gasoline bulk delivery precludes the use of this method.
- **3.2** Gasoline cargo tanks exceeding the allowable year-round (daily) <u>pressure-decay</u> standards, as defined in CP-204, preclude the use of this method.
- 3.3 Unusually large cargo tank headspace volumes may cause low volumetric efficiencies under certain thermal conditions. Conversely, unusually small headspace volumes may result in abnormally high efficiencies. During the Certification Process for a Phase I system, the cargo tank headspace volumes should be between 3.0 and 10.0 percent of the total cargo tank capacity prior to the delivery.

4. SENSITIVITY, RANGE AND PRECISION


- 4.1 If mechanical pressure gauges are employed, the minimum readability of the pressure gauges shall be 0.2 inches H₂O and the minimum accuracy of the gauge shall be three percent of full scale. The diameter of the pressure gauge face shall be four inches or greater.
- **4.2** If an electronic pressuring device is used, the full scale range of the device shall not exceed 0 to 10 inches H₂O with a minimum accuracy of 0.5 percent of full scale. A 0 to 20 inches H₂O device may be used, provided the equivalent accuracy is not less than 0.25 percent of full scale.

5. EQUIPMENT

5.1 Positive Displacement Meter(s). Use a rotary type positive displacement meter(s) with a back pressure less than 1.1 inches H_2O at a flowrate of 3,000 CFH. The meter shall be equipped with a 0 to 1 inch H_2O pressure gauge and a 0 to 150 OF thermocouple on the inlet side.


Figure 1

Cargo Tank Pressure Assembly

- **5.2** Flexible Tubing. Use 2.5 inch ID Flexhaust tubing, or equivalent, to connect the vent pipe outlet to the inlet of the rotary positive displacement meter. The length of the tubing shall be the minimum required for proper connection.
- **5.3** Cargo Tank Pressure Assembly. Use OPW® 633-F and 633-D couplers, or equivalent, as shown in Figure 1. The assembly shall be equipped with a thermometer and a pressure gauge, or manometer (oil or water), capable of measuring -10 to +10 inches H₂O pressure at the gasoline cargo tank vapor coupler.
- 5.4 Storage Tank Pressure Assembly. For two-point Phase I systems, use a compatible OPW® 634-B cap(s), or equivalent, equipped with a 0 to 0.5 inches H₂O pressure gauge and a center probe as shown in Figure 2. This equipment is only required if a test is conducted on a manifolded vapor recovery system.

Figure 2
Storage Tank Pressure Assembly

- **5.5** Combustible Gas Detector. Use a Bacharach Instrument Company Model 0023-7356®, or equivalent, to quantify any vapor leaks occurring during the gasoline bulk drop.
- **5.6** Barometer. Use a mercury, aneroid, or equivalent barometer accurate to within $\frac{51}{2}$ millimeters of mercury (0.204 inches of mercury).

- **5.7** Thermometers. Use three thermometer, or equivalent, with a range of 0 to 150 °F and accurate to within 2 °F.
- **5.8** Stopwatch. Use a stopwatch accurate to within 0.2 seconds to time the delivery rate of gasoline during the bulk drop.

6. PRE-TEST PROCEDURES

- 6.1 The positive displacement meter shall be calibrated against a standard reference meter prior to its initial use in the field and at intervals not to exceed 180 days. The reference meter shall be either a spirometer or wet-test meter with a capacity applicable for the specific mater to be calibrated. Calibration shall be performed at a minimum of three flowrates representing approximately 0.25, 0.50 and 0.75 percent of rated capacity.
- **6.2** Perform a visual inspection of all storage tank couplers. Inspect all vapor connections at the gasoline dispensers if Phase II vapor recovery is present.
- 6.3 Connect the positive displacement meter to the appropriate storage tank vent pipe using the flexible tubing. If the Phase I is manifolded, or if a "normal" non-manifolded delivery consists of simultaneous delivery of more than one product grade, connect one positive displacement meter to each storage tank vent pipe Alternatively, flexible tubing may be used to construct a temporary manifold into a single positive displacement meter. The meter shall be as close as possible to the vent pipe outlets.
- **6.4** Record the gas grade, capacity, and ullage for each storage tank on the Phase I Vapor Recovery Data Sheet (Form 1).
- **6.5** Record, on the Phase I Vent Pipe Data Sheet (Form 2), the initial meter readings from the positive displacement meter.
- **6.6** Record, on the Phase I Vapor Recovery Data Sheet, the barometric pressure.
- **6.7** Connect the Cargo Tank Vapor Assembly to the vapor coupler on the gasoline cargo tank. If the cargo tank vapor coupler is equipped with a poppet, be sure to use a pressure assembly with a center probe.
- 6.8 If a manifolded vapor recovery system with a two-point Phase I system is being tested, install a Storage Tank Pressure Assembly on the Phase I vapor connections of those tanks not receiving product. During each bulk drop record the maximum pressure in those tanks. For coaxial Phase I systems the pressure may be measured at the dispensers.
- **6.9** Insure that no vehicle refueling will occur during the bulk gasoline delivery.

7. TESTING

- **7.1** Record, on the Phase I Vapor Recovery Data Sheet (Form 1), the gasoline grade(s) and quantities delivered during each bulk drop. Also record, on the Phase I Cargo Tank Data Sheet (Form 3), the cargo tank CT#, CARB decal number, expiration date, and the cargo tank compartment capacities.
- **7.2** Start the stopwatch when the bulk delivery begins and stop the stopwatch at the conclusion of the delivery. If possible, the delivery rate should be determined for each cargo tank compartment.
- **7.3** Record the following parameters every 15 seconds during each gasoline bulk drop:
 - 7.3.1 Meter readings, temperatures and pressures at the positive displacement meter. Extreme care must be taken to record all positive displacements since occasional reverse flow conditions may occur. Record this data on the Phase I Vent Pipe Data Sheet (Form 1).
 - 7.3.2 Vacuum (or pressure) and temperature at the cargo tank pressure assembly attached to the cargo tank vapor coupler. Record this data on the Phase I Cargo Tank Data Sheet (Form 3).
- **7.4** Continue to monitor the vent pipe emissions for a period of one hour after the bulk drop has been completed. During this one hour period the data collection required in 7.3.1 shall be recorded at 5 minute intervals. These emissions are to be included in the Phase I efficiency calculation.

8. POST TEST PROCEDURES

- **8.1** At the conclusion of the bulk drop, remove the Cargo Tank Pressure Assembly from the cargo tank and the Storage Tank Pressure Assembly(s) from the storage tank(s).
- **8.2** Disconnect all instrumentation from the storage tank vent pipe(s) after concluding the one hour post-drop portion of the test.
- **8.3** Verify the quantities of gasoline delivered to each storage tank.
- **8.4** Record the final meter reading(s) at the storage tank vent pipe(s).

9. CALCULATING RESULTS

9.1 The volume of vapors discharged through "i-th" vent shall be calculated as follows:

$$V_{vsi} = \frac{V_{vi} * 530[Pb + \Delta h/13.6]}{T_{vi} * 29.92}$$
 Equation 9.1

Where:

Vvsi = Total volume of vapors discharged through the "i-th" vent pipe, corrected

to 70°F (530°R) and 29.92" Hg, SCF

Pb = Barometric Pressure, inches Hg

Vvi = Total volume of vapors discharged through the "i-th" vent; ACF

Tvi = Average temperature in "i-th" vent line, ${}^{0}R$ Δh = Average pressure at meter, inches H₂0 13.6 = Inches of water per inch of mercury

i = Vent under consideration

9.2 The volume of vapors returned to the cargo tank shall be calculated as follows:

$$V_{t} = \boxed{ \frac{\left(G_{t}\right)\!\!\left(530\!\!\left(\frac{P_{b} + \Delta h}{13.6}\right)\right)}{\left(T_{t}\right)\!\!\left(29.92\right)\!\!\left(7.481\right)}}$$
 Equation 9.2

Where:

 V_t = Volume of vapors returned to the cargo tank corrected to 70° F (530°R)

and 29.92" Hg, SCF

 G_t = Volume of gasoline delivered, gallons

 Δh = Final gauge pressure at cargo tank, in. H₂O

 T_t = Average temperature of vapors returned to cargo tank, ${}^{\circ}R$

 P_b = Barometric Ppressure, inches Hg

13.6 = Conversion factor, linches of water column per inch of mercury

530 = Temperature, °R

7.481 = Conversion factor; gallons to ft³

9.3 The collection efficiency shall be calculated as follows:

$$E = 100 \left[\frac{V_t - V_{vsi}}{V_t} \right]$$
 Equation 9.3

Where:

E = Phase I Volumetric Efficiency, percent

 V_t = From 9.2 V_{vsi} = From 9.1

10. REPORTING RESULTS

10.1 Results shall be reported as shown on Form 4.

11. ALTERNATE PROCEDURES

11.1 This procedure shall be conducted as specified. Modifications to this test procedure shall not be used to determine compliance unless prior written approval has been obtained from the ARB Executive Officer, pursuant to Section 14 of Certification Procedure CP-201.

Form 1

PHASE | VAPOR RECOVERY DATA SHEET

Station:	Address:					City:		
Contact:		Phone: Da			Date:			
Number of Underground Tanks:			Numl	ber of Vent Pipe	s:			
TEST SEQUENCE		1		2	3		4	
1. Ambient Temperature, °F								
2. Barometric Pressure, inches of Hg								
3. Gasoline Grade								
4. U.G. Tank Size, gallons								
5. Initial U.G. Tank Content, gal.								
6. Time Delivery Began								
7. Beginning Vent Meter Reading								
8. U.G. Tank Vapor Temperature, °F								
9. Vent Vapor Temperature, °F								
10. Vent Meter Pressure, inches of wa	nter							
11. Volume Delivered, gallons								
12. Time Delivery Ended								
13. Ending Vent Meter Reading								
14. Drop Flowrate, gallons/minute								
15. Volume of Vent Emissions , scf								
16. Volume of Vapor Returned to Carg	go Tank, scf							
VAPOR RECOVERY EFFICIENCY, %	, 0							
$Efficiency = \left(\frac{\#16 - \#15}{\#16}\right) x 10$	00 con	T PERSONN	≣:				_	

Form 2

PHASE I VENT PIPE DATA SHEET

Station	Address	City
GDF#	Contact	Phone
Date	Test Times	Manifolded (Y/N)

Drop#	rop# Drop#				Drop#						
Grade(s)			Grade(s)			Grade(s)					
Gallons				Gallons			Gallons				
Time	Meter	ΔΡ	Temp	Time	Meter	ΔΡ	Temp	Time	Meter	Δ	Temp
	Reading		°F		Reading		°F		Reading	Р	°F
0 sec				0 sec				0 sec			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
1 min				1 min				1 min			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
2 min				2 min				2 min			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
3 min				3 min				3 min			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
4 min				4 min				4 min			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
5 min				5 min				5 min			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
6 min				6 min				6 min			
15 sec				15 sec				15 sec			
30 sec				30 sec				30 sec			
45 sec				45 sec				45 sec			
7 min				7 min				7 min			

Form 3

PHASE I CARGO TANK DATA SHEET

Station	Address	City
GDF#	Contact	Phone
Date	Test Times	Manifolded (Y/N)

Drop#			Drop#		Drop#				
C. T. #			C. T. #			C. T. #			
CARB De	ecal #		CARB Decal #			CARB Decal #			
Decal Ex	pires		Decal Expires			Decal Expires			
C. T. Cap	acity		C. T. Ca	pacity		C. T. Cap	C. T. Capacity		
Grade(s)			Grade(s)			Grade(s)		
Gallons			Gallons			Gallons			
Time	ΔΡ	Temp °F	Time	ΔΡ	Temp °F	Time	ΔΡ	Temp °F	
0 sec			0 sec			0 sec			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
1 min			1 min			1 min			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
2 min			2 min			2 min			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
3 min			3 min			3 min			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
4 min			4 min			4 min			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
5 min			5 min			5 min			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
6 min			6 min			6 min			
15 sec			15 sec			15 sec			
30 sec			30 sec			30 sec			
45 sec			45 sec			45 sec			
7 min			7 min			7 min			
California	Air Resourc	a Daniel					0	ember 29, 2000	

Form 4								
Distribution:		Air Agency						
(for internal use only)		7 7. .g eey		Test Date: <u>Test Times:</u>				
				Run A:				
		Summary of		Run B:				
	Sou	rce Test Results	5	Run C:				
S	ource Informat	ion	Air	Represe	ntatives			
Company Name and Addre	ess Company Rep	presentative and Title	Source Test	Engineers				
	Phone No. ()						
Permit Conditions:	Source:		Other					
	Plant No. Operates	Permit No. Hr/Day & Day/Yr.	Test Reques	ted By:				
Operating Parameters								
Applicable Regulations:			VN Recomm	ended:				
Source Test Results and C METHOD TP-201.1	Comments:	DROP #1 DR	OP #2 D	ROP #3	<u>LIMIT</u>			
GASOLINE GRAD	ΡΕ							
GALLONS DELIVI	ERED							
VENT PIPE EXHA	VENT PIPE EXHAUST, SCF							
VAPORS RETURI	NED TO							
CARGO TANK, SO	CF							

PHASE I VOLUME EFFICIENCY,

Test Engineer II	Date	Supervising Engineer	Date	Approved by Engineering Manager

VOLUME %

98.0*****

 $[\]ensuremath{^{\star}}$ Each bulk gasoline drop is subject to this standard.