

Moving Towards Commercialization as the 1st Carbon-Negative, Compression-Ignition Fuel

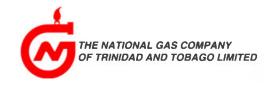
October 12, 2017

Dairy and Livestock Subgroup #2: Fostering Markets for Digester Projects

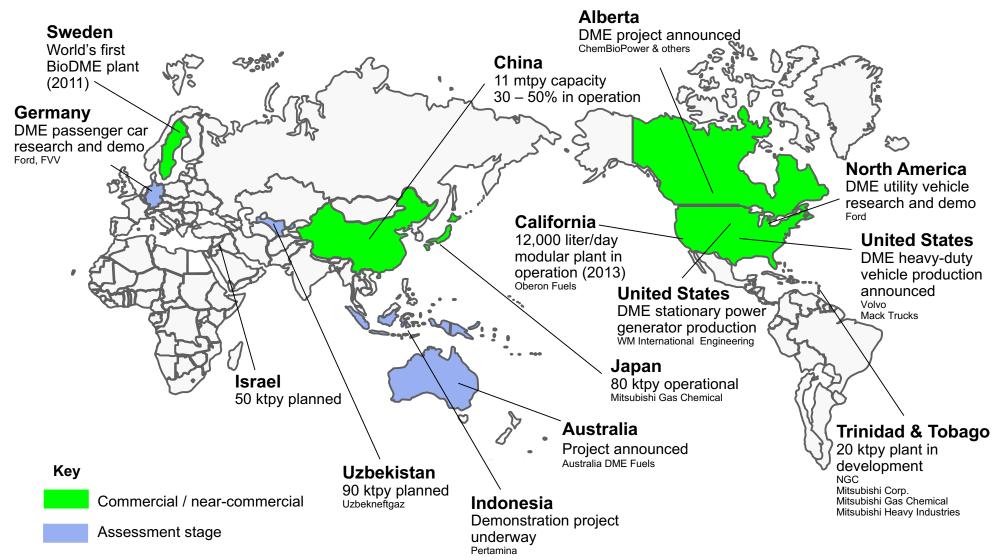
Rebecca Boudreaux, Ph.D.

Chair, International DME Association President, Oberon Fuels

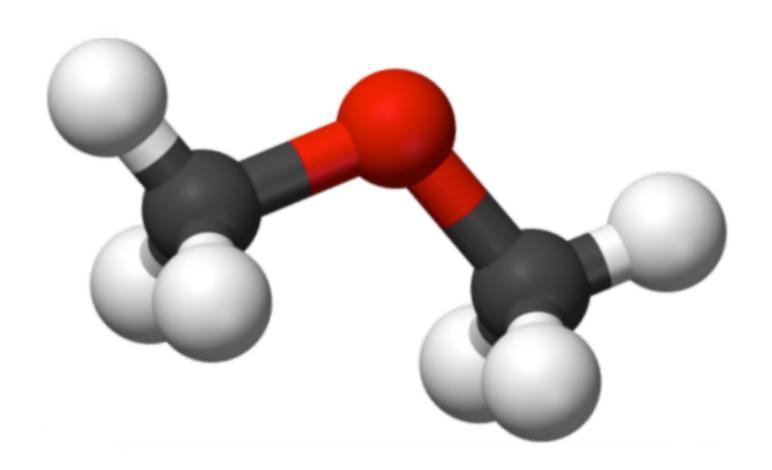
International DME Association



FUEL OF THE FUTURE

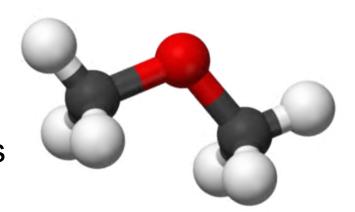


DME Around the World



"...significantly expand the number of livestock digester projects in California. "...identify both commercial ready emerging technologies and approaches "...identification of potential impacts, benefits, and barrier to scaling up projects..."

DME is a Renewable Gas

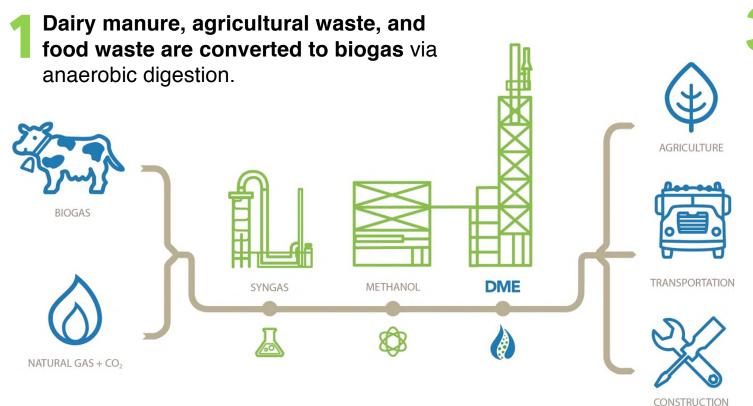


Dimethyl Ether (DME)

Simple Fuel

- Clean burning, no soot generated
- Made from various methane sources

Simple Infrastructure


LPG-like Handling (cylinders/tank, only change seal)

Simple Engine

- Diesel-like performance, less after treatment
- Efficiency & torque of diesel engine with no soot produced

DME is a Renewable Gas

pME based on renewable feedstocks offers a 68-101% GHG reduction, combusts with NO soot/PM, and is an excellent, clean-burning, diesel replacement. Initial Applications: Heavy-duty trucking

Biogas is converted to DME via the Oberon 3-step process, resulting in a fuel with an estimated carbon intensity of -237. Both the CH₄ and CO₂ in biogas is converted to DME. No CO₂ scrubbing.

DME Environmental Benefits

 Biogas-based, Oberon DME qualifies for EPA D-3 & D-5 RINs

68% GHG reduction

- In 2016, Argonne updated DME GREET Model
- DME = 85-101% GHG reduction (waste biomass, landfill gas, animal & organic waste)

DME Engine Development

Diesel-like Performance, LPG-like Handling

Partners include TOTAL, Preem, Delphi, ETC, Chemrec, & Haldor Topsoe DME fuel pump at ENN service station (Shanghai)

Moving Towards Commercialization

2015

Ford building world's first DME-powered passenger car for on-road testing.

2017

Ford developing world's first DME engine for full-size pickup trucks.

Development of the 6.7 liter engine, for use in the popular F-250, F-350, and F-450, is underway.

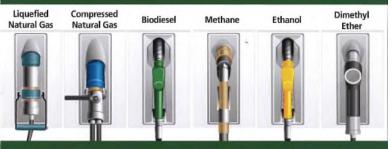
NYC Department of Sanitation (DSNY) first Mack customer in the world to test a DME-powered Mack truck. (Photo Ron Jautz © 2017)

Moving Towards Commercialization

- Aftermarket conversions moving forward
- Enable the conversion of 100% diesel vehicles to run on both DME and diesel
- Initial studies indicate 30-60% diesel displacement
- Advanced testing phase of conversion technologies used in the European market, adapted for DME use

What is next for DME?

100 DME vehicles on the road in 2018-2019


- **DME** known to be a clean-burning, low-carbon diesel replacement 20+ years. *Technical hurdles are no longer an issue.*
- Remaining questions are:
 - How do we scale the DME supply chain economically?
 - Do DME's economics and favorable properties lead to customer demand for the fuel?

Where do we go from here?

- Collaborative Projects for biogas-based fuel production
 - Better understand the economics and applicability of each fuel-type to the CA dairy industry in particular
 - Shared fueling infrastructure
 - Shared alternative-fuel maintenance facilities
 - Determine additional synergies among technology solutions

Moving Towards Commercialization as the 1st Carbon-Negative, Compression-Ignition Fuel

Rebecca Boudreaux, Ph.D.

Chair, International DME Association President & Board Member, Oberon Fuels rebecca@oberonfuels.com

International DME Association
DME: 21st Century Energy

DME Regulations

ASTM Intl. Specification

Published 2014 ASTM D7901-14b DME as a fuel

ISO Standard

Published 2015 as ISO 16861:2015

DMF as a fuel

Legal Fuel in CA

CDFA modified CA Code of Regulations to allow the legal sale of DME as a fuel effective January 1, 2015.

Tier 1 Report

As part of Multimedia Assessment process, CARB published DME Tier 1 report February 2015. Evaluated DME effects on air, soil, and water.

RINS Eligible

Renewable Fuel Standard (RFS) Pathway Approved