## "Dairy Biogas to Electric Vehicle Transportation Pathway" in the San Joaquin Valley

# California Dairy and Livestock Greenhouse Gas Reduction Working Group <u>Digester Sub-Group</u>

Dave Warner

Deputy Air Pollution Control Officer

San Joaquin Valley Unified Air Pollution Control District

February 26, 2018

### Air Quality Challenges in the San Joaquin Valley

- Surrounding mountains and meteorology create ideal conditions for trapping air pollution
- Economic challenges –20 of California's 30 most disadvantaged communities (CalEnviroScreen)
- Extreme nonattainment for 8-hr Ozone Standard (summer)
- Serious nonattainment for PM2.5 Standards (winter)
- NOx the most critical pollutant in the SJV for both ozone and PM2.5
- ~ 85% of NOx from mobile sources
- > 80% reduction in stationary source NOx emissions since 1980





#### **Additional NOx Reductions Needed in SJV**

(2025 Serious Deadline for 2012 Annual PM2.5 Std)



## Dairy Methane Reductions and NOx

- NOx from <u>all sources</u> in the SJV must be reduced to meet health-based air quality standards for Valley residents
  - Currently don't know how to reduce NOx enough to get healthy air
  - So need NOx reductions, not increases
- Climate change (methane reduction) efforts that generate NOx in the Valley mean that other businesses have to reduce NOx even more – not a lot of opportunity, since we have the most stringent rules
- Biomethane burned in IC engine, used to produce on-farm power, generates new NOx emissions
  - NOx is produced at about 0.45 lb/MW-hr
- Biomethane: pipeline injection or vehicle fuel
  - Displaces fuel already being burned
  - No NOx increase
  - All of CDFA's recent grants going to such projects!



## **Example Dairy Methane Project**

- Dairy digester serving 7000 head (single large dairy, or "cluster" piping gas to central location)
- Standard on-farm power production
  - Lean-burn engine controlled by Selective Catalytic Reduction (SCR)
  - 0.45 lb NOx/MW-hr
  - 3300 lbs NOx per year
- Ultra-low NOx on-farm power production
  - Lean-burn engine with advanced SCR, microturbines, etc.
  - 0.07 lb NOx/MW-hr
  - 500 lbs NOx per year
- No-NOx solutions:
  - Fuel cells (on-farm power production)
  - Pipeline injection
  - Use as vehicle fuel (substantial NOx <u>benefit</u> if used in new 0.02 gr-NOx/bhp-hr natural gas-fired truck engines)

## Biomethane Electric Vehicle Pathway

- The question that has been posed:
  - Are there air quality advantages to using biomethane to generate on-farm power that charges electric vehicles?
- Note that climate change benefits are NOT local air quality benefits
- Are there <u>direct</u> local air quality benefits?
  - All NOx impacts are the same as on-farm power production for any other purpose (refer to prior slide)
  - So, no direct air quality benefits, potential disbenefit
- Are there <u>indirect</u> local air quality benefits?
  - Perhaps, if it increases electric vehicle use
  - However, don't see the Biomethane Electric Vehicle Pathway as generating demand or additional electric vehicle usage, and haven't seen any arguments that suggest that it does
  - So, no identified indirect air quality benefits
- Can support on-farm fuel cell power production for electric vehicle charging (no NOx increase)

