California 1383 Non-Digester Subgroup

Newtrient LLC March, 2018

AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

AGENDA:

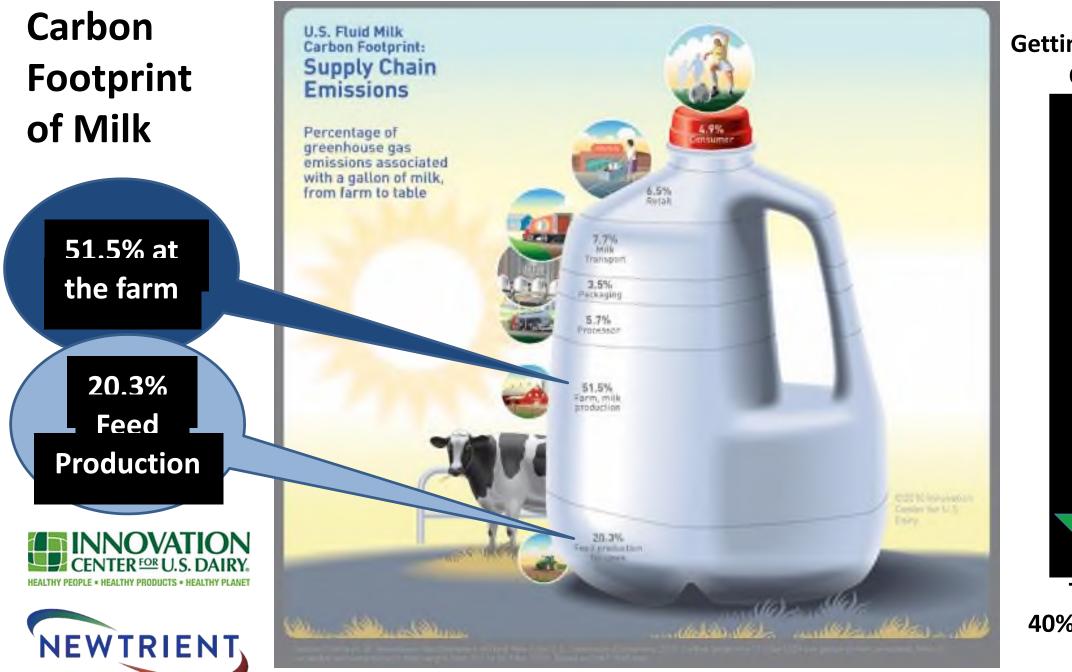
Introduction and mission

- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

Newtrient:

LAND O'LAKES, INC.

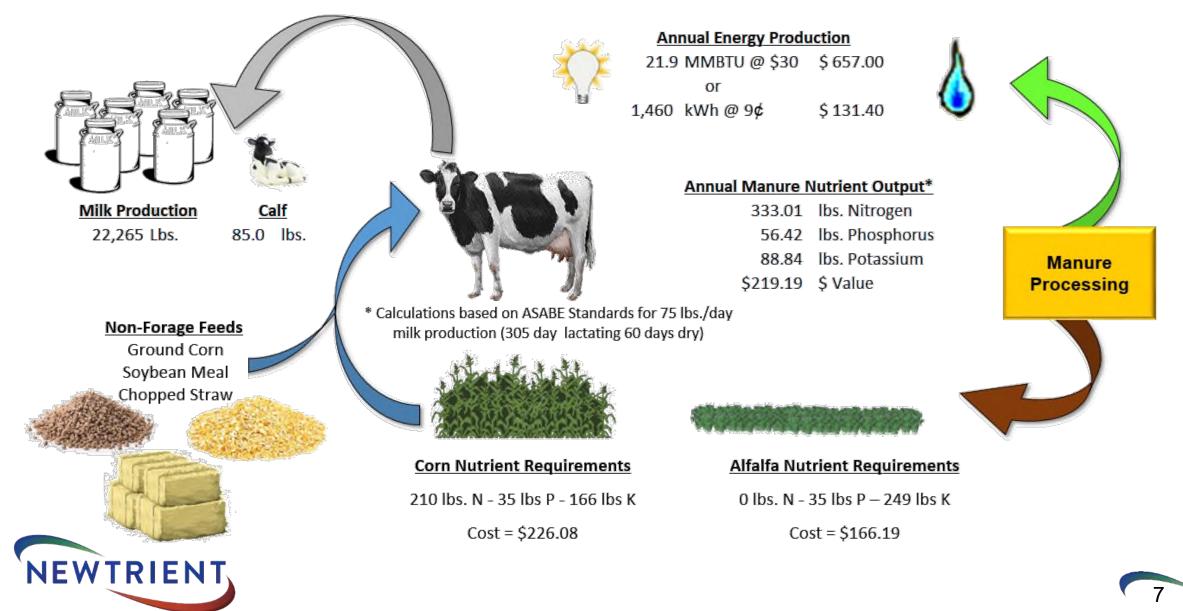
Newtrient:


Reducing the environmental footprint of dairy and making it economically viable to do so

Technology Catalog Business Development

Environmental Services Marketplace

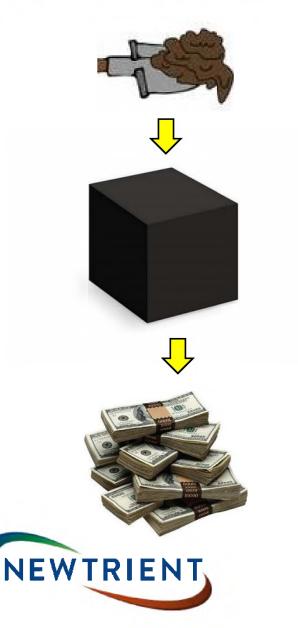
Providing an unbiased view of today's manure management options Advancing manure-based technologies and products Generating both environmental and economic benefits


NEWTRIENT, http://www.newtrient.com/Catalog/Technology-Catalog/

Getting from Here Current

To Here **40% Reduction**

Protecting the Environment while Feeding the World


AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

The Ideal Manure Management System

- ✓ EFFICIENT ODOR CONTROL
- ✓ EFFICIENT CONTROL OF N & P (CLEAN WATER ACT)
- ✓ IMPROVE FLY CONTROL
- ✓ REDUCTION OF PATHOGENIC BACTERIA
- ✓ REDUCED AIR EMISSIONS (CLEAN AIR ACT)
 - METHANE AMMONIA
 - HYDROGEN SULFIDE NOx
- ✓ RETURN ON CAPITAL THROUGH BY-PRODUCTS
 - FERTILIZER ENERGY
 - HEAT CREDITS

✓ EASE OF OPERATION / LOW OPERATING COSTS

Integrated Manure Management Systems

 ✓ The key components in most overall farm manure management systems are determined by the goals and objectives of the operation

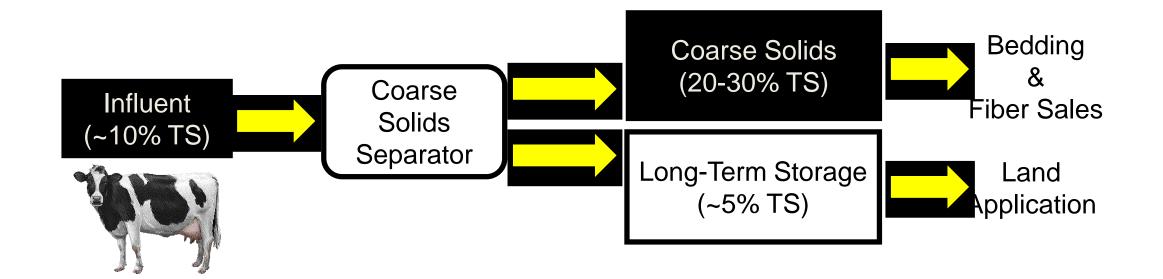
✓ Profitability drives adoption by farmers

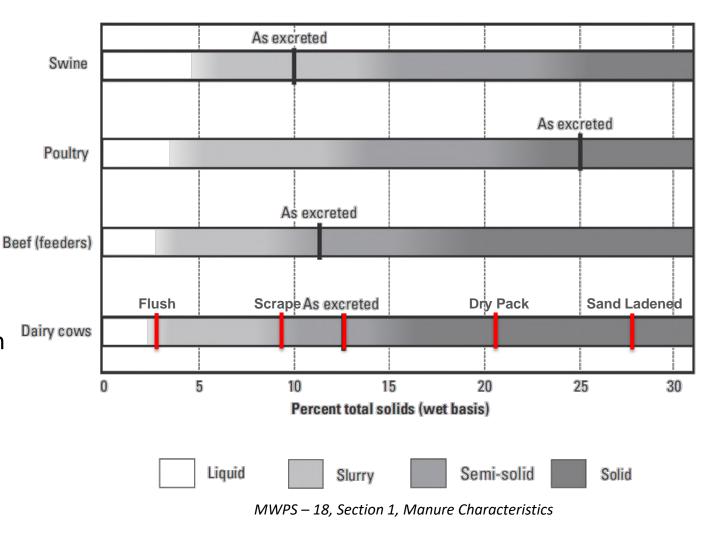
 ✓ Too often integrated manure management systems profitability is insufficient for adoption

What is an Integrated Manure Management System?

An assembly of manure handling and treatment processes, arranged in a strategic fashion, to accomplish identified farm, water quality, and/or air quality goals and objectives.

Example of One Set of Farm Level Goals and Objectives


- Pump manure further with less energy
- Generate bedding
- Maximize use of manure nutrients
- Reduce the size or extend the use of long-term storage


Coarse Solid Separation – Storage – Land Application

Identifying Resources for Developing Manure Management Systems

- No single source to identify best technologies
- Technology types should be sorted by impact on specific operational and environmental critical indicators
- Assist the dairy industry in making decisions in area of specific concern
- So Newtrient is expanding its Technology Catalog

Next Steps: Developing Critical Indica

Technology Strengths, Weaknesses and Critical Indicators

Anaerobic Digester technology

- Is proven technology for odor, GHG and pathogen reduction and energy production
- · Has a long usable life and can be run reliably
- Require proper preparation of the feedstock
- Usually requires other technologies for energy utilization
- Usually requires other technologies for digestate handling
- Proper feeding & system monitoring is required to avoid system downtime

NEWTRIENT

Nitrogen Recovery

Phosphorus Recovery

Storage Reduction

Pathogen Reduction

PEER REVIEWED

GHG Reduction

Odor Control

P

Negative

P

D DOCUMENTED

P

(E)

Newtrient Comments/Opinions:

The DVO Two Stage Linear Vortex digester is a mixed plug flow design and is currently in operation on over 90 projects ranging in size from 500 to 15,000 head. The DVO system has evolved to be a reliable and efficient energy production platform on dairy manure. DVO has demonstrated a consistent commitment to the advancement, development and commercialization of anaerobic digestion and manure management technology. DVO is a founding member of the American Biogas Council (ABC) and active in the promotion of the dairy industry at all levels.

Newtrient will continue to work with DVO to further refine the cost and performance information as more information comes in with new commercial dairy installations.

Comments added 01/08/2017

Home About Us Our Team Terms of Use C

Copyright © 2016 | Newtrient, LLC | All right

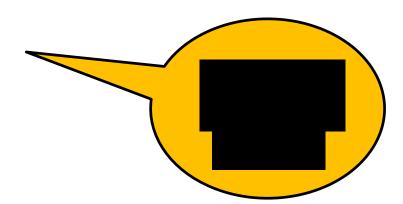
P

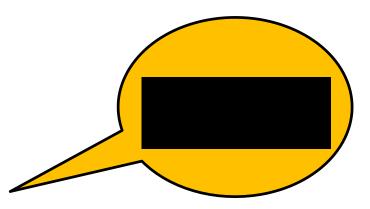
EXPERT OPINION

Next Steps: Developing Critical Indicators

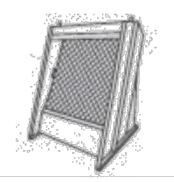
	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%≠	%	%
Evaporation	95+	95+	40-75	34-66+	>67+	>67+

Overall Summary


Evaporative systems typically use multi-stage thermal and/or electrical inputs under vacuum to distil and then condense a 'clean water' while producing a remaining concentrate. As such, evaporative systems are an option for volume reduction and subsequent concentration of the nutrients in liquid manure and/or digestate.


Presently no evaporative systems are in operation within US dairies, with some commercialized in dairies in Europe. In Europe, commercial applications almost exclusively treat anaerobically digested manure so that the waste thermal energy from the combined heat power generators can offset the costs of the high energy inputs (240-350 kWh/m³ of water evaporated). However, in manure-alone applications, the waste energy can only provide a small portion of the needed energy—thereby requiring extensive co-digestion to provide the extra energy.

Reports from these facilities showed a volume reduction of approximately 50%, and total solid contents in the concentrate stream of 10-15%. However, pilot scale studies show potential for much larger volume reduction, even on the order of 90% when combining evaporative systems with dryers, while potentially reducing energy inputs via mechanical vapor compression. Across all configurations, the approach necessitates considerations for control of antmonia and volatile organic emissions during treatment, with pH control and companion use of strippers/membrane systems as options. With such significant concentration of the manure into smaller volumes, the process can be viewed as partitioning nearly all the nitrogen (with suitable pH controls) and phosphorus into concentrated products suitable for either off-farm valued-added sales or on-farm ferblizer use at reduced handling and application costs. Assuming suitable controls for ammonia as well as volatile organics in the condensate stream, the systems can lead to significant odor and greenhouse mitigation, via production of a concentrate that can reduce the oddrous and GHG gas emissions from lagoons—the extent to which is related to the degree of concentration obtained. With high temperature and pressure treatment, pathogen treatment is extensive leading to both concentrate and condensate with near pasteurization level reductions.


References


- Chiumenti, A., da Borso, F., Chiumenti, R., Teri, F., & Sepantin, P. (2013). Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability. Waste management, 33(6), 1339-1344.
 Drogg, B., Fuchs, W., Al Spacif, T., Madsen, M., & Linke, B. (2015). Nutrient recovery by biogas digestate processing, IEA Bioenergy. Implementing Agreement for a <u>Drogramme</u> of Research, Development and Demonstration on Bioenergy, ISBN 978-910154-16-8.
- Elotats, X., Enged, H.L., Blasi, A.B., Palatsi, J., Magri, A., & Schelde, K.M. (2011). Manure processing technologies. Technical Report No. II concerning 'Manure Processing Activities in Europe" to the European Commission, Directorate-General Environment. 184 pp.
- Fuchs, W., & Droso, B. (2013). Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters, Water Science and Technology, 67.9 10/04-1993.

Coarse Solid Separation

Slope Screen

Sloped wedge-wire screens that diluted manure is pumped over to remove the course solids, often followed by screw presses or rollers to remove additional water.

Screw Press

A wedge-wire screen cylinder that manure is forced through by an auger to force out the water, back pressure is maintained on the material in the cylinder by means of a gate or gates at the discharge of the cylinder.

Rotary Drum Screen

Rotating drums of wedge wire or screen that manure is pumped through to remove the liquid, often followed by screw presses or rollers to remove additional water.

Discussion: Coarse and Fine Solids Separation GHG Impact

	Coarse Solids ^a		Fine Solids ^a		Combined Example ^b	
	Rotary	Slope	Screw	Centrifuge	Flocculation	Slope Screen + DAF
TS Reductions (%)	13-21	20-40	20-50	30-60	55-70	73
VS Solids (% of TS)	80-85	85-92	85-92	75-80	75-80	86
VS Reductions (%)	10-18	17-37	17-46	23-48	41-56	63
Category Range (TS and VS)	13-50	%	10-46%	30-70	23-56	
GHG Mitigation Potential ^c	ME	DIUM (34	-67%)	MEDIUM	I (34-67%)	HIGH (67%+)

^a Summary of data in critical indicator literature review and assessment

^b Specific industrial data on slope screen and DAF combined treatment after digestion (TS of 4% into screen) (Bronstad et al., 2017) ^c Estimate of GHG mitigation potential from VS reduction using critical indicator literature review

- Literature data available has wide extremes is often quite dated, varied in conditions, and at times suspect. The Newtrient technology team assessed and interpreted data from literature and industry sources and adjusted based on experience and expertise of the members for determination of best estimate ranges.
- Interpretation of GHG mitigation potential was from analysis of key literature where available detailing both solids separation and specific GHG component gas reductions AS WELL as application of those VS/GHG conclusions to other technologies that did not have specific literature. Compared to lagoon baseline. Not lifecycle analysis.

Capital and O&M Costs:

Table 1. Estimated Capital and O&M costs by *unit operation* for 1,500 cow scrape dairy (52,500 gallons/day)

	1° Solids	Fine Solids	Struvite	NDN	Ammonia	Membrane	Evaporation
Capital (\$/cow)		90-168	100-200	212-502	300- <mark>5</mark> 00	500-750	400-900
Mean Installed Capital (Est.)		\$450,000	\$550,000	\$750,000	\$750,000	\$2,100,000	\$2,300,000
3 rd Party O&M (\$/cow/year)		30-55	80-100	15-50	50-100	100-200	250-360
Mean 3 rd Party O/M <mark>(</mark> /year)		\$64,000	\$135,000	\$50,000	\$113,000	\$225,000	\$458,000

Table 2. Estimated Capital and O&M costs by unit operation for 1,500 cow flush dairy (300,000 gallons/day) using 6/10th rule of estimating

		<u> </u>					-
	1° Solids	Fine Solids	Struvite	NDN	Ammonia	Membrane	Evaporation
Capital (\$/cow)		256-478	285-569	603-1,429	854-1,423	1,423-2,134	1,138-2,561
Mean Installed Capital (Est.)		\$1,281,000	\$1,565,000	\$2,134,000	\$2,134,000	\$5,976,000	\$6,545,000
3 rd Party O&M (\$/cow/year)		85-157	228-285	43-142	142-285	285-569	711-1,024
Mean 3 rd Party O/M (/year)		\$182,000	\$384,000	\$142,000	\$322,000	\$640,000	\$1,303,000
ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:				1			Frear et al (In Press)

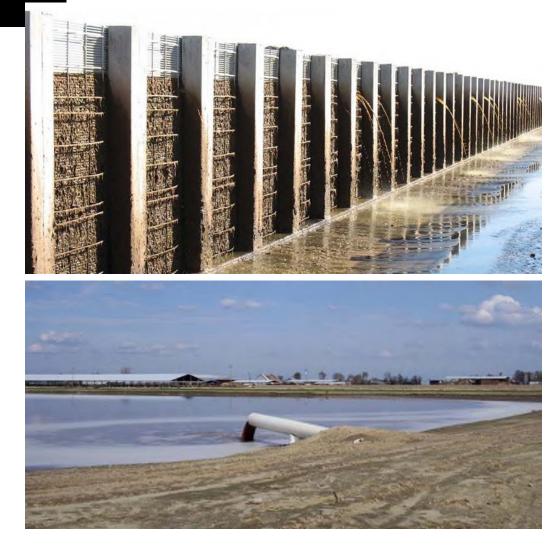
Numbers within table are estimates and to be considered as rough comparisons only, as every project will be different, requiring unique costs.

Frear et al., (In Press)

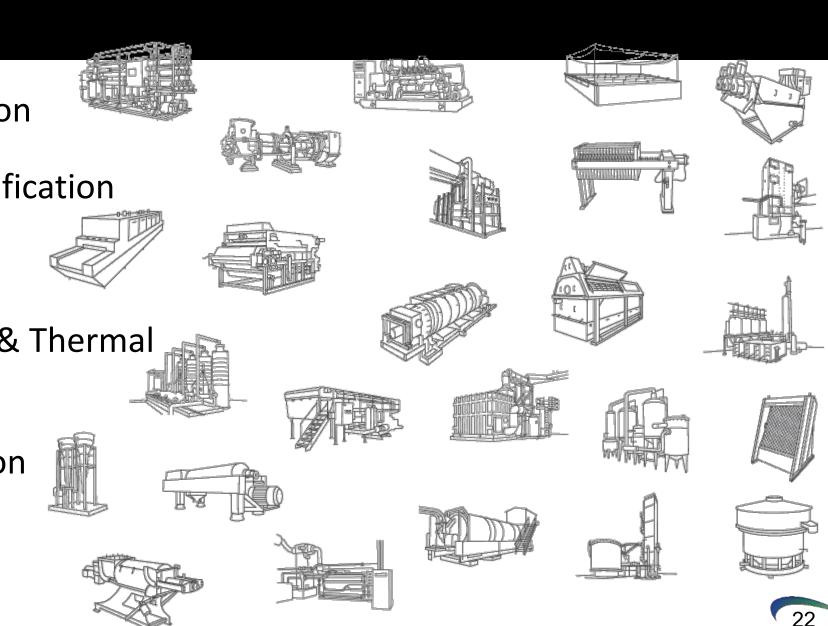
Flush dairies will impact costs in varied ways with some technologies more sensitive to increased flows, and others more dependent on solids or nutrient masses.

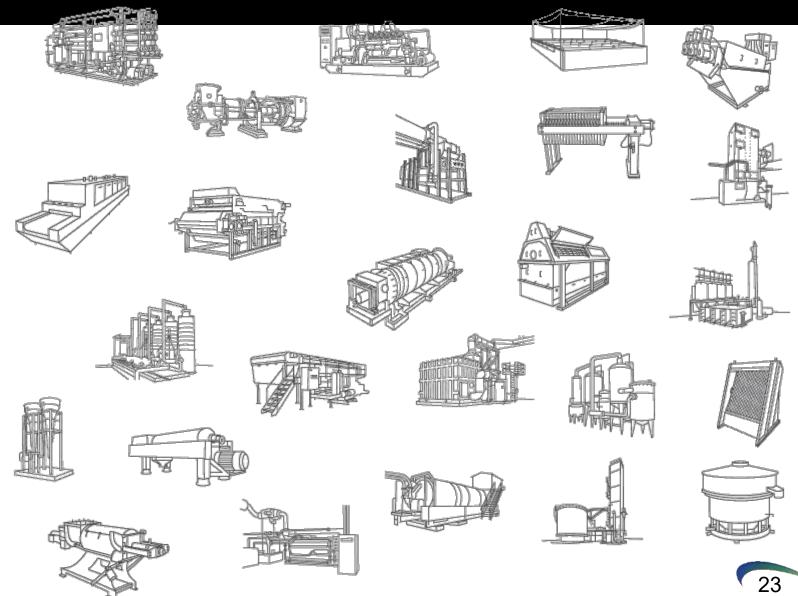
AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

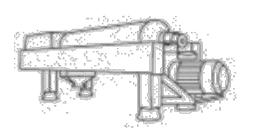


Gravity Separation


- Alternative Lagoon Designs
- Animal Housing & Bedding
- Manure and Lagoon Additives
- Enteric Methane Additives
- Pasture Based Systems
- Best Management Practices
- Solar Drying or Drying Beds
- Composting



- Fine solids separation
- Nitrification/Denitrification
- Salt Removal
- Energy Generation & Thermal Conversion
- Drying & Evaporation



• Fine solids separation

Fine Solid Separation

Centrifuge

Physical separation of fine particles by centrifugal force may or may not be assisted by polymers or coagulants, also used for dewatering following other fine solids separation systems.

Centrifuge without Polymer

	Negative	Positive
Nitrogen Recovery		• (P)
Phosphorus Recovery		
Storage Reduction		• (P) • • • • • • • • • • • • • • • • • • •
GHG Reduction		
Odor Control		
Pathogen Reduction		

Challenges to Adoption:

Pros

- Readily available
- Suited to climate
- Established technology
- Medium GHG impact
- Modest CapEX
- Organic byproduct

Cons

- Further treatment required
- Volume dependent system flush manure collection drives up CapEx
- High OpEx

	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
Centrifuge	20 ±	40+	10-20+	34-66+	0-33+	Neutral

Fine Solid Separation

Polymer or Coagulant Flocculation

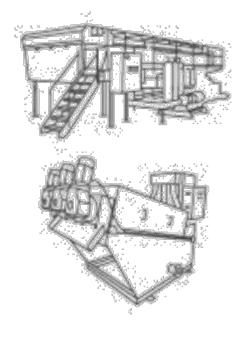
Introduction of select chemicals to induce small suspended particles to bind together into larger particles or flocs so that they can either float or sink, leading to separation and removal.

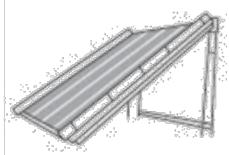
Centrifuge with Polymer

	Negative	Positive
Nitrogen Recovery		
hosphorus Recovery		P•
itorage Reduction		• • • • • • • • • • • • • • • • • • •
HG Reduction		
dor Control		
Pathogen Reduction		

Challenges to Adoption:

Pros


- Readily available
- Suited to climate
- Established technology
- Medium GHG impact
- Modest CapEX


Cons

- Further treatment required
- Volume dependent system flush manure collection drives up CapEx
- Higher OpEx
- Byproduct is not organic

	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
Centrifuge	40±	80+	10-20+	34-66+	0-33+	Neutral

Fine Solid Separation - Polymer Assisted Dewatering

NEWTRIENT

Dissolved Air Floatation(DAF)

Physical and chemical removal of fine solids by floating with very fine air bubbles assisted by polymers or coagulants.

Moving Disc Press

A cylinder made up of many vertically arranged plates that uses an auger to force out the water, back-pressure is maintained on the material in the cylinder, may or may not be assisted by polymers or coagulants also used for dewatering following other fine solids separation systems.

Incline Screen

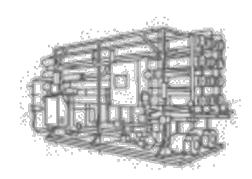
Similar to slope screens but with finer screens and equipped with sprayers or vibrators for continuous cleaning, usually used with polymers or coagulants.

Polymer Assisted Dewatering

	Negative	Positive
Nitrogen Recovery		
hosphorus Recovery		— (P)
storage Reduction		- (P)
HG Reduction		
Odor Control		
Pathogen Reduction		

Pros

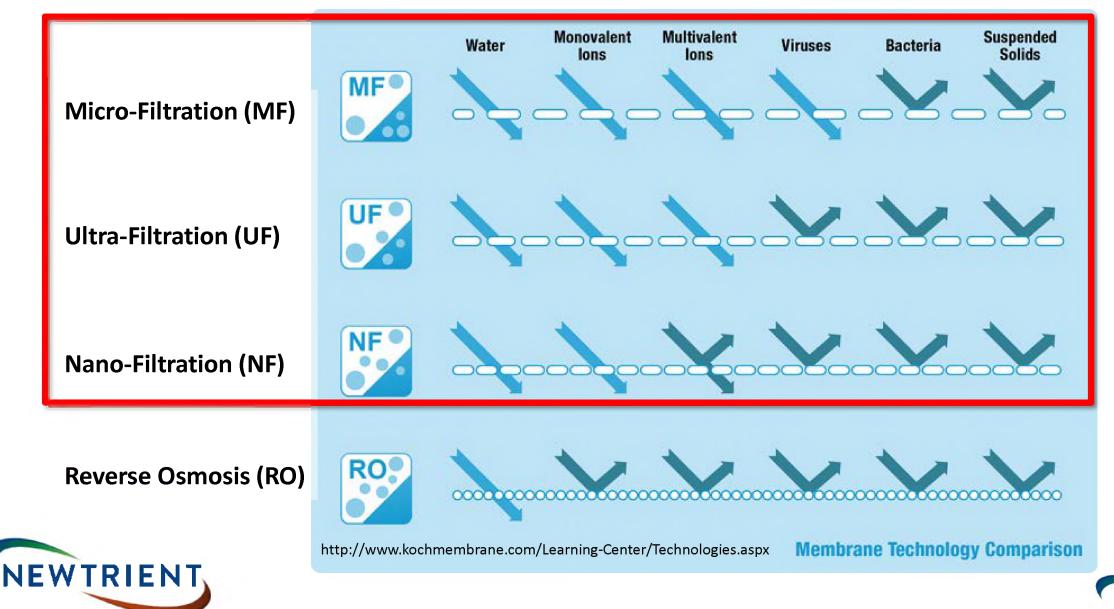
- Established technology
- High phosphorus impact
- Medium CapEX
- Medium GHG reduction
- Medium odor reduction


Cons

- Medium/High OpEx
- Volume dependent system flush manure collection drives up CapEx and OpEx
- Further treatment required
- Byproduct is not organic

	Nitrogen	Phosphorus	Storage	GHG	Odor	Pathogen
	Recovery	Recovery	Reduction	Reduction	Control	Reduction
	%	%	%	%	%	%
Chemical Flocculation	35-45	>67+	10-25	34-66+	34-66+	Neutral

Fine Solids Separation – UF Membranes


Membrane Separation

Membranes can be designed to selectively attract contaminants while methane flows through the membrane. Membranes can be back-washed to remove contaminants for continued use.

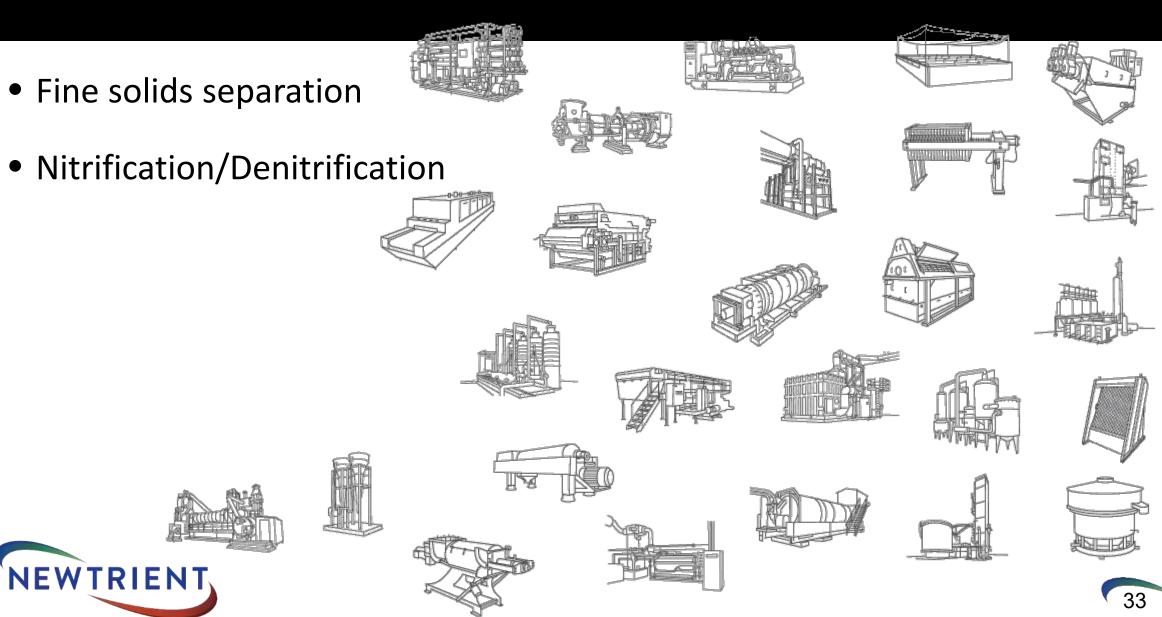
Fine Solids Removal – Membrane Systems

Membrane Separation – Ultra-Filtration

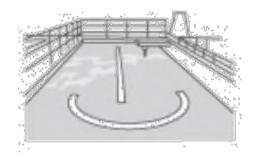
	Negative	Positive
Nitrogen Recovery		—P—
Phosphorus Recovery		— (P)
Storage Reduction		
GHG Reduction		
Odor Control		
Pathogen Reduction		— (P)

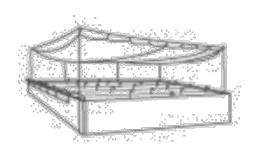
Challenges to Adoption:

Pros


- Established technology
- High P reduction
- Medium N reduction
- Organic byproduct

Cons


- Neutral GHG reduction
- Medium/High CapEX
- Medium/High OpEx
- Volume dependent system flush manure collection drives up CapEx and OpEx
- Further treatment required


	Nitrogen Recovery %	Phosphorus Recovery %		GHG Reduction %	Odor Control %	Pathogen Reduction %
UF	37-63%	50-97%	23-42%	Neutral	Neutral	>67+

- Fine solids separation
- Nitrification/Denitrification

Nitrification/Denitrification

Nitrification/Denitrification

Both traditional and modified methods to convert ammonia nitrogen biologically to non-reactive nitrogen gas that can be released to the atmosphere. Various organisms and degrees of aerobic and anaerobic contact allow for the conversion.

Vermifiltration

Higher organisms such as red worms within a media filter-bed can convert ammonia nitrogen to bound organic nitrogen in the worms/castings, nonreactive nitrogen gas as well as other forms, thus vastly reducing the ammonia content of the wastewater while making saleable worm/casting by-products.

Nutrient Separation & Nitrification/Denitrification (NDN)

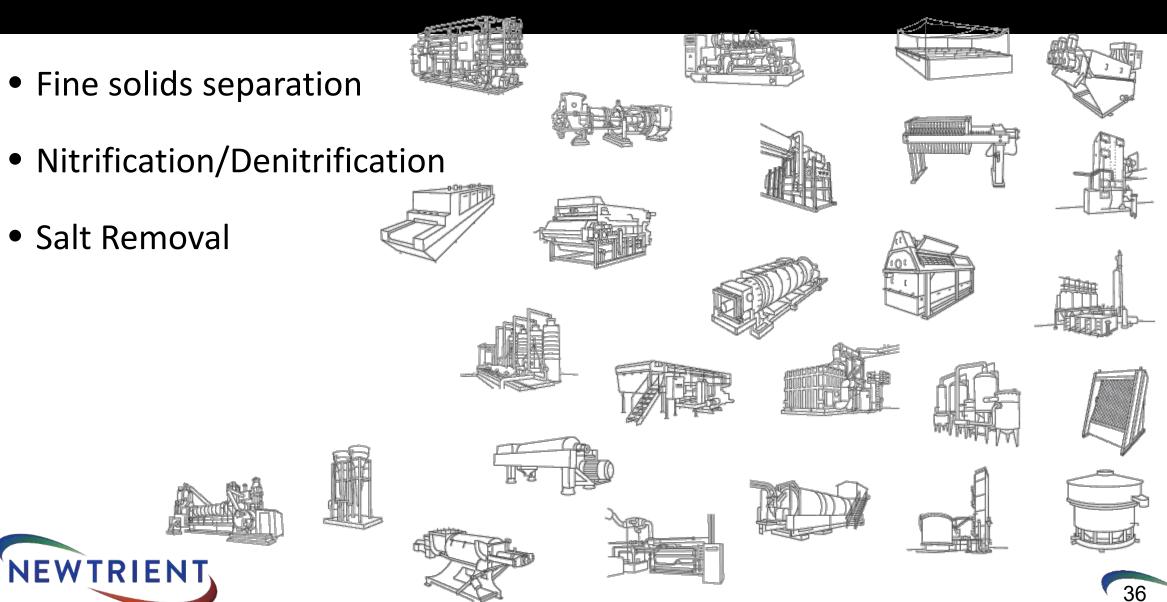
	Negative	Positive
Nitrogen Recovery		— (P)
hosphorus Recovery		
Storage Reduction		
GHG Reduction		P,
Odor Control		(Ē)
Pathogen Reduction		

Challenges to Adoption:

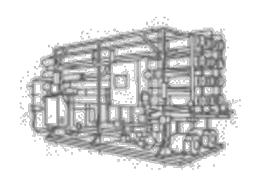
NEWTRIENT

Pros

- Established technology
- High N reduction
- High GHG reduction
- Medium P reduction
- High odor reduction
- Organic byproduct
- Medium/Low OpEx
- No further treatment required

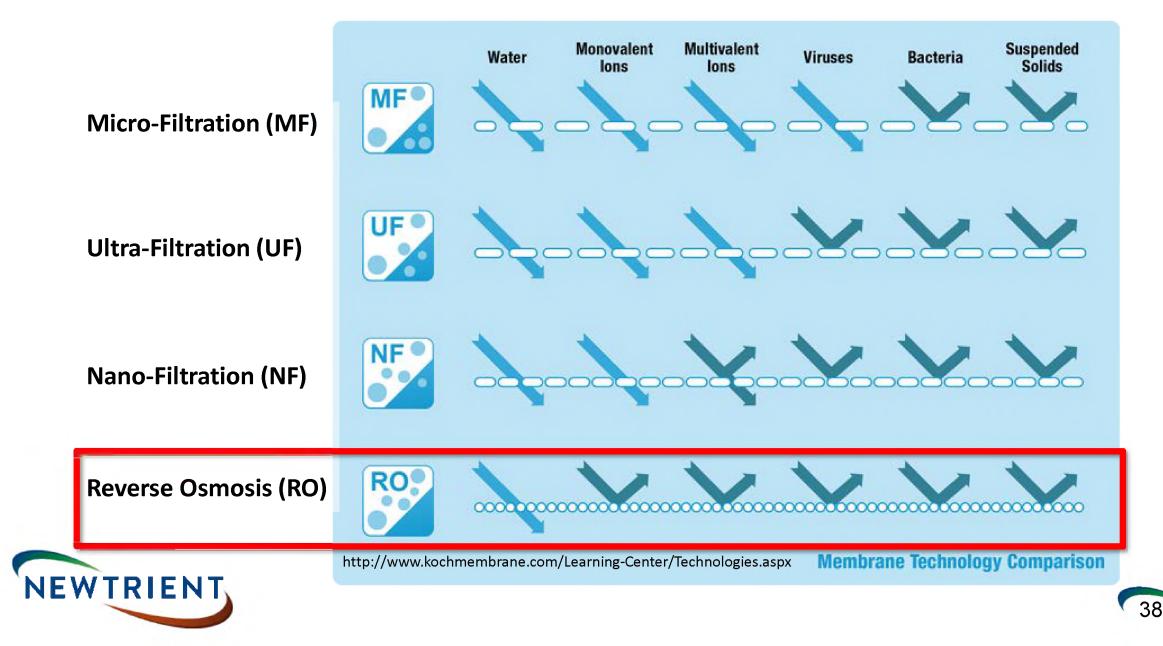

Cons

- Medium/High CapEX
- Loss of N for fertilizer
- Volume dependent system flush manure collection drives up CapEx and OpEx


	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
NDN	60-90%	20-50%	Neutral	>67+	>67+	34-66+

- Fine solids separation
- Nitrification/Denitrification
- Salt Removal

Salt Removal – Membrane Systems


Membrane Separation

Membranes can be designed to selectively attract contaminants while methane flows through the membrane. Membranes can be back-washed to remove contaminants for continued use.

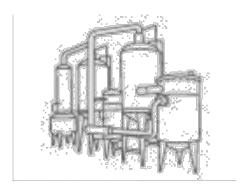
Salt Removal – Membrane Systems

Membrane Separation – Clean Water System

	Negative	Positive
Nitrogen Recovery		P
hosphorus Recovery		— (P)
Storage Reduction		
GHG Reduction		
Odor Control		
Pathogen Reduction	(P	

Challenges to Adoption:

Pros


- Established technology
- High N reduction
- High P reduction
- High Storage reduction
- Organic byproducts
- "Clean Water" for reuse

Cons

- Neutral GHG reduction
- Medium/High CapEX
- Medium/High OpEx
- Volume dependent system flush manure collection drives up CapEx and OpEx
- Further treatment required

	Nitrogen	Phosphorus	Storage	GHG	Odor	Pathogen
	Recovery	Recovery	Reduction	Reduction	Control	Reduction
	%	%	%	%	%	%
Membrane	95+	95+	70+	Neutral	Neutral	Neutral

Evaporation

Evaporative Systems

Beyond manure drying, as discussed above regarding manure solids, manure wastewater can be partially or completely dried by evaporating the liquid through a series of in-series cascading evaporative reactors. Energy inputs and balances can be a concern while treatment of volatiles in the evaporated liquid is also required.

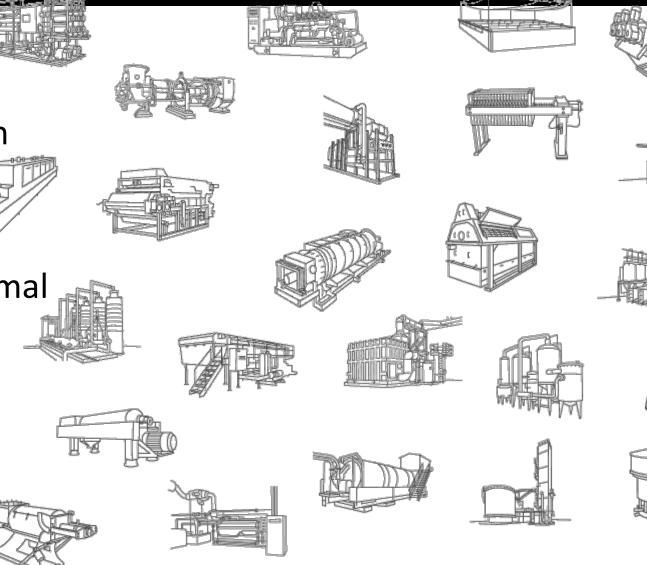
Evaporation

	Negative	Positive
Nitrogen Recovery		D ,
Phosphorus Recovery		
Storage Reduction		
GHG Reduction		
Odor Control		
Pathogen Reduction		— (E)

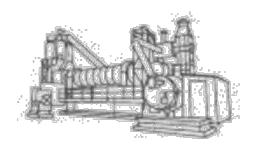
Challenges to Adoption:

Pros

- High P reduction
- High N reduction
- Medium Storage
 reduction
- Medium GHG reduction
- Organic byproducts


Cons

- New technology
- Medium/High CapEX
- Medium/High OpEx
- Volume dependent system flush manure collection drives up CapEx and OpEx


	Nitrogen Recovery	Phosphorus Recovery		GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
Evaporation	95+	95+	40-75	34-66+	>67+	>67+

- Fine solids separation
- Nitrification/Denitrification
- Salt Removal
- Energy Generation & Thermal Conversion

Energy Generation / Thermal Conversion

Torrefaction

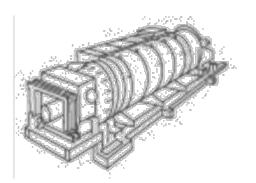
A lower temperature version of pyrolysis (approximately 200-370C) aimed at densifying the energy content of biomass solids, by producing primarily a bio-char or charcoal.

Torrefaction

	Negative	Positive
litrogen Recovery		
hosphorus Recovery		
itorage Reduction		
HG Reduction		D,
Odor Control		
athogen Reduction		— (E) —

Challenges to Adoption:

Pros


- High GHG reduction
- High P reduction
- High N reduction
- Medium Storage
 reduction
- Organic byproduct
- "Process Water" question

Cons

- "New" technology (2006)
- Medium/High CapEX
- Medium/High OpEx
- Requires high solids wastes or concentration

	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
Torrefaction	40-65	90+	34-66+	>67+	34-66+	>67+

Energy Generation / Thermal Conversion

Pyrolysis

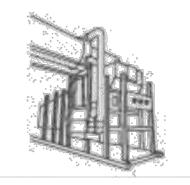
Use of moderate temperatures (approximately 400C or higher) in the absence of air to convert biomass solids into more energy-dense forms, producing combustible gases, liquids that can be further refined to liquid fuels and solid bio-chars.

Pyrolysis

	Negative	Positive
Nitrogen Recovery		
Phosphorus Recovery		— (P)
Storage Reduction		—P
GHG Reduction		—P
Odor Control		— (P)
Pathogen Reduction		—P

Challenges to Adoption:

Pros


- High GHG reduction
- High P recovery
- High storage reduction
- High odor reduction
- High pathogen reduction
- Organic byproduct

Cons

- "New" technology for manure
- Medium/High CapEX
- Medium/High OpEx
- Requires high solids wastes or concentration
- Loss of N for fertilizer
- Undeveloped byproduct market

	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
Pyrolysis	>67-	~>67+	100	>67+	>67+	>67+

Energy Generation / Thermal Conversion

Gasification

High temperature, controlled combustion in presence of air (>800C) that completely converts solid biomass to gases, which can then be used for heat, power, and fuel.

Gasification

	Negative	Positive
Nitrogen Recovery	(P	
Phosphorus Recovery		
Storage Reduction		(P)
HG Reduction		
Odor Control		P
Pathogen Reduction		

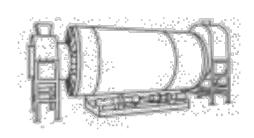
Challenges to Adoption:

Pros

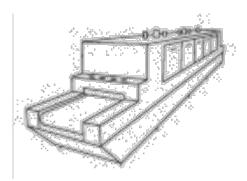
- High GHG reduction
- High P recovery
- High Storage reduction
- High odor reduction
- High pathogen reduction
- Organic byproduct

Cons

- "New" technology for manure
- Medium/High CapEX
- Medium/High OpEx
- Requires high solids wastes or concentration
- Loss of N for fertilizer
- Undeveloped byproduct market


	Nitrogen Recovery	Phosphorus Recovery	Storage Reduction	GHG Reduction	Odor Control	Pathogen Reduction
	%	%	%	%	%	%
Gasification	>67-	>67+	>67+	>67+	>67+	>67+

- Fine solids separation
- Nitrification/Denitrification
- Salt Removal
- Energy Generation & Thermal Conversion
- Drying & Evaporation



Drying

Drum Driers

A slightly inclined drum fed on high end with solids and counter-current flow of warm air starting on the lower end. With strategically placed lifters and rotation, effective air/solids mixing occurs for evaporation and drying of solids.

Belt Driers

A series of perforated steel plates which are chain driven to carry solids across a horizontal flow of warm air, inducing evaporation of moisture and drying of solids.

Drying

	Negative	Positive
Nitrogen Recovery		
hosphorus Recovery	(
torage Reduction		D•
HG Reduction		
odor Control		
Pathogen Reduction		(E)•

Challenges to Adoption:

Pros

- High odor reduction
- High pathogen reduction
- Medium GHG
- Medium P recovery
- Medium Storage
 reduction
- Organic byproduct if feedstock is organic

Cons

- Medium/High CapEX
- Medium/High OpEx
- Requires high solids wastes or concentration

	Nitrogen	Phosphorus	Storage	GHG	Odor	Pathogen
	Recovery	Recovery	Reduction	Reduction	Control	Reduction
	%	%	%	%	%	%
Solids Drying	10+	Neutral	80+	0-33+	>67+	>67+

AGENDA:

- Introduction and mission
- Integrated manure treat feat systems and resources for a velopment
- Technologies for treating target
- Putting the pieces to bet
- Products and mark
- Non-digester techn
 Sime ant GHG reduct on
- Challenges to implement ion in the second sec
- Recommendations for meeting be GAL

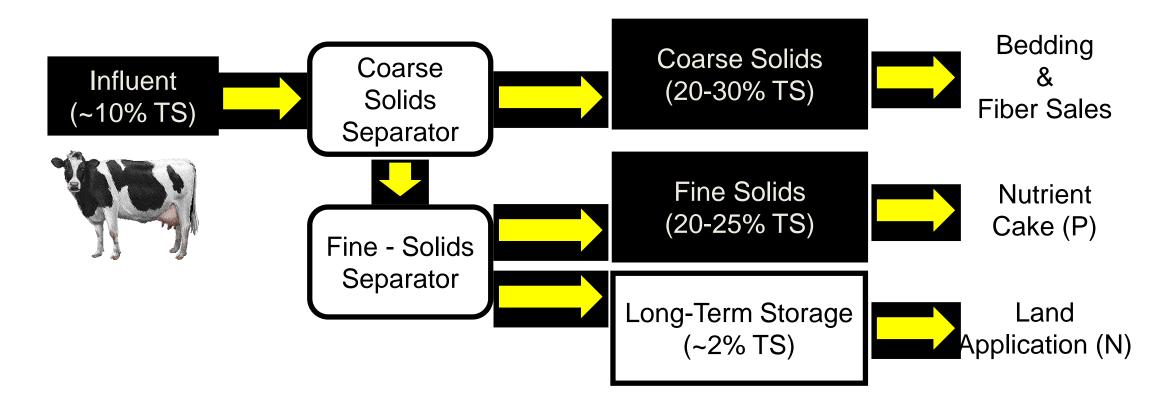
AGENUA

AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

Keeping the Goal in Mind and in Sight.

Additional Farm Goals...


- Reduce odors associated with stored manure
- Reduce GHG emissions
- Diversify their business/risk management
- Reduce purchased fertilizer inputs
- Reduce land application costs
- Improve nutrient utilization by crop

Coarse Separation – Fine Separation – Storage – Land Application

Capital and O&M Costs:

Table 1. Estimated Capital and O&M costs by unit operation for 1,500 cow scrape dairy (52,500 gallons/day)

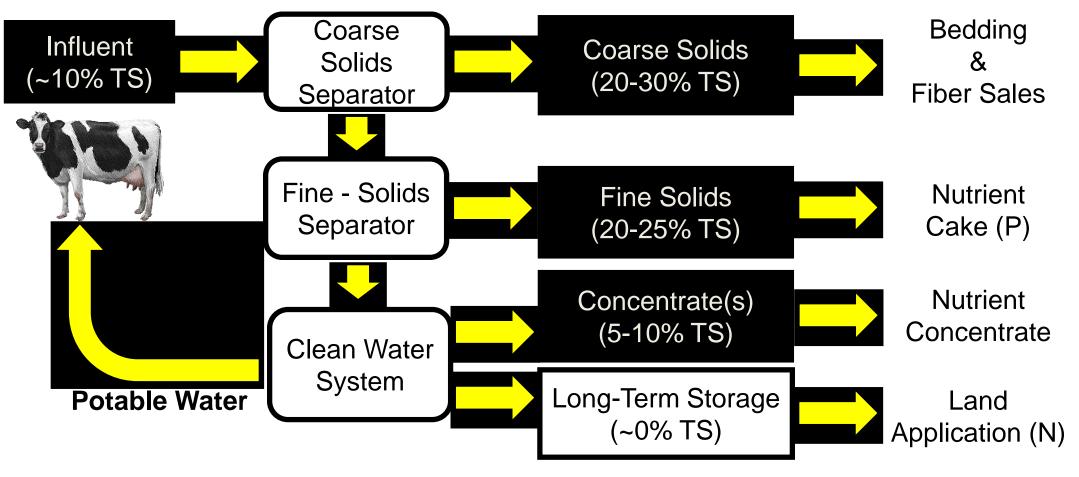
	1° Solids	Fine Solids	Struvite	NDN	Ammonia	Membrane	Evaporation
Capital (\$/cow)			100-200	212-502	300-500	500-750	400-900
Mean Installed Capital (Est.)	\$570,000		\$550,000	\$750,000	\$750,000	\$2,100,000	\$2,300,000
3 rd Party O&M (\$/cow/year)			80-100	15-50	50-100	100-200	250-360
Mean 3 rd Party O/M (/year)	\$82	2,000	\$135,000	\$50,000	\$113,000	\$225,000	\$458,000

Table 2. Estimated Capital and O&M costs by unit operation for 1,500 cow flush dairy (300,000 gallons/day) using 6/10th rule of estimating

	1° Solids	Fine Solids	Struvite	NDN	Ammonia	Membrane	Evaporation
Capital (\$/cow)			285-569	603-1,429	854-1,423	1,423-2,134	1,138-2,561
Mean Installed Capital (Est.)	\$1,622,000		\$1,565,000	\$2,134,000	\$2,134,000	\$5,976,000	\$6,545,000
3 rd Party O&M (\$/cow/year)			228-285	43-142	142-285	285-569	711-1,024
Mean 3 rd Party O/M (/year)	\$23	3,000	\$384,000	\$142,000	\$322,000	\$640,000	\$1,303,000
Numbers within table are estimates	s and to be				t requiring unique e	o o to	Frear et al., (In Press)

Numbers within table are estimates and to be considered as rough comparisons only, as every project will be different, requiring unique costs. Flush dairies will impact costs in varied ways with some technologies more sensitive to increased flows, and others more dependent on solids or nutrient masses.

Further Possible Farm Goals...


- Eliminate liquid manure
- Replace freshwater with reclaimed water for meeting cow needs

Coarse Separation – Fine Separation – Clean Water – Land Application

Capital and O&M Costs:

Table 1. Estimated Capital and O&M costs by *unit operation* for 1,500 cow scrape dairy (52,500 gallons/day)

-							
	1° Solids	Fine Solids	Struvite	NDN	Ammonia	Membrane	Evaporation
Capital (\$/cow)			100-200	212-502	300-500		400-900
Mean Installed Capital <mark>(</mark> Est.)	\$2,670,000						
3 rd Party O&M (\$/cow/year)			80-100	15-50	50-100		250-360
Mean 3 rd Party O/M (/year)	\$407,000						\$458,000

Table 2. Estimated Capital and O&M costs by unit operation for 1,500 cow flush dairy (300,000 gallons/day) using 6/10th rule of estimating

	1° Solids	Fine Solids	Struvite	NDN	Ammonia	Membrane	Evaporation
Capital (\$/cow)			285-569	603- 1, 429	854-1,423		1,138-2,561
Mean Installed Capital (Est.)	\$7,598,000						\$6,545,000
3 rd Party O&M (\$/cow/year)			228-285	43-142	142-285		711-1,024
Mean 3 rd Party O/M (/year)	\$873,000						\$1,303,000
Numbers within table are estimates and to be considered as rough comparisons only, as every project with be different, requiring unique costs.							Frear et al., (In Press)

Flush dairies will impact costs in varied ways with some technologies more sensitive to increased flows, and others more dependent on solids or nutrient masses.

AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

What Products are Cost Effective and Profitable in California?

Getting from the Theoretical to the Practical

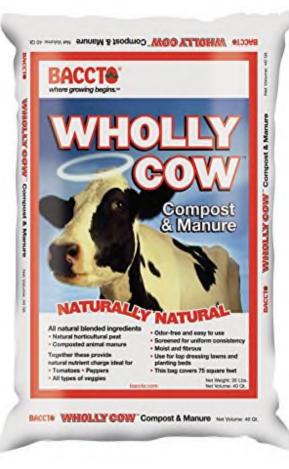
Manure as a raw material for products of value

NEWTRIENT

Environmental Services Manure-based Products Energy • Carbon • N – Ammonium Nitrate, • Electricity Renewable Identification **Ammonium Sulfate** • Heat Numbers (RINs) • P – Ammonium Phosphate, Renewable Natural Gas • Low Carbon Fuel Standard Mono-ammonium Phosphate • Aviation Fuel (LCFS) • Compost • Biodiesel • Renewable Energy Credits Bedding Hydrogen (RECs) • Custom Fertilizer Products Methanol Nutrient trading: Water • Worm Castings • Syngas quality credits (N & P) • Biochar • Other monetizable • Water attributes (e.g. flood • "Cow Pots" (fiber control, water quantity • "Magic Dirt" (fiber) management • Zeolite • Soil health attributes • Struvite • Digestate algae • Humus

Local Products & Markets

Specialty Products & Markets



Manure composite boards

International Products & Markets

Fertikal is a worldwide player in the organic fertilizer market.

Fertikal processes Flemish (Belgian) and Dutch manure into composted soil conditioner and granulated organic fertilizer for agricultural and horticultural markets.

Fertikal's offices and production are located in the Port of Antwerp.

The production plant has been completely modernized in 2014 and is one of the largest in Europe.

http://www.fertikal.be/en/process-distribution

Regional Products & Markets

The First Commercial Fertilizer Plant in the United States based Entirely on Manure Based Products

Innovative Partnership between Prairies Edge and Midwestern Bio Ag focuses on NPK cake as feedstock for commercial fertilizer plant

- 85,000 ft² facility for turnkey fertilizer manufacturing
- Production capacity of 65,000 tons of fertilizer each year
- 96% dry matter custom blended fertilizer TerraNu

AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

Non-Digester Technologies for Significant GHG Reduction

• Concentration and further treatment

• HTC

• Gasification

• Evaporative Systems

Concentration and Further Treatment

- What is the Concept:
 - Utilize non-digester technologies to reduce GHG on farms and create feedstocks for further treatment
 - Concentrate liquid using UF technology and send to AD plants for processing
 - Collect and dry materials for use in HTC and Gasification
- Why is this of interest:
 - Reduces the need for interconnection at each dairy
 - Maximizes the GHG and odor reduction for a larger area
 - Reduces number of employees required at each site
- Status and Next Steps:
 - Needs to be allowed by regulations and programs
 - Need to identify initial pilot dairy project(s)
 - Include other agriculture and industrial partners

Non-Digester Technologies for Significant GHG Reduction

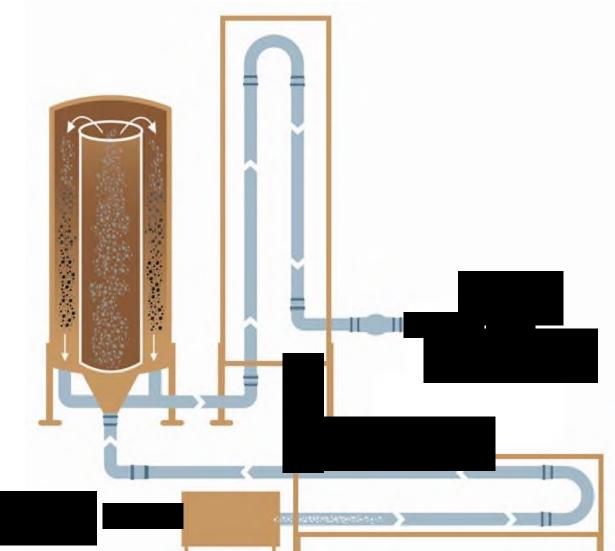
• Concentration and further treatment

Non-Digester Technologies for Significant GHG Reduction

• Concentration and further treatment

• HTC

- What is HTC:
 - Hydrothermal carbonization (HTC)
 - Converts wet biomass using temperature & pressure to produce
 Biocoal and Process Water (It's a Pressure Cooker)
 - Biocoal and Process Water are potential value added products
- Why HTC technology is of interest:
 - Targeted CapEx & OpEx costs are comparable existing technologies
 - Targeted Byproducts have a higher value than existing technologies
 - Technology is currently in use in Europe
- Status of Technology and Next Steps:
 - Early in the process of bringing this technology to the US
 - Next Step is identifying initial pilot dairy project(s)



HTC Processor

System based on experience from processing organic wastes in Europe

- Pathogen free finished products from liquid and semi-solid dairy manure (220°C, 322 psi, 2 hours)
- Reclaim water by producing non-potable water for on-farm recycle and reuse, and
- Value-added byproducts for export:
 - Concentrated liquid high in organic acids
 - Biocoal for direct replacement of fossil coal used in heating and energy production.

HTC PROCESS

mnovation. LOW aready proven teennology

• Confidence: HIGH due to experience from Europe and proven technology from established vendors

nniovation. LOW aneady proven teennology

• Confidence: HIGH due to experience from Europe and proven technology from established vendors

mnovation. LOW aready interested parties in utility sector for biocoal

• Confidence: HIGH due to experience from Europe and discussions with US utilities

mnovation. MEDIUM/ HIGH no established market but several proven technologies for processing

 Confidence: MEDIUM/LOW due to experience with current digester business models and economics and limited number of buyers in the chemical industry

mnovation. LOW aready proven UF and RO technology

• Confidence: **HIGH** due to experience with UF and RO technology with other dairy waste streams

Non-Digester Technologies for Significant GHG Reduction

• Concentration and further treatment

• HTC

• Gasification

Gasification:

- What is Gasification:
 - Dewatered manure solids are thermally destroyed in a low oxygen environment
 - Produces syngas that can be used for energy and biochar
- Why is Gasification of interest:
 - Targeted CapEx & OpEx costs are comparable to existing technologies
 - Targeted products have the potential of a high market value
 - Works with dry lot and lower moisture materials
- Status of Technology and Next Steps:
 - Early in the implementation some systems are in operation
 - Next step is facility that meets California regulations

 Confidence: HIGH due to experience from existing systems and proven technology from established vendors

Innovation. LOW ancasy proven technology

 Confidence: HIGH due to experience from existing systems and proven technology from established vendors

Confidence: MEDIUM /LOW due to lack of fully developed market and long term data

mnovation. LOW ancasy proven technology

• Confidence: **HIGH** due to experience from existing systems and proven technology from established vendors

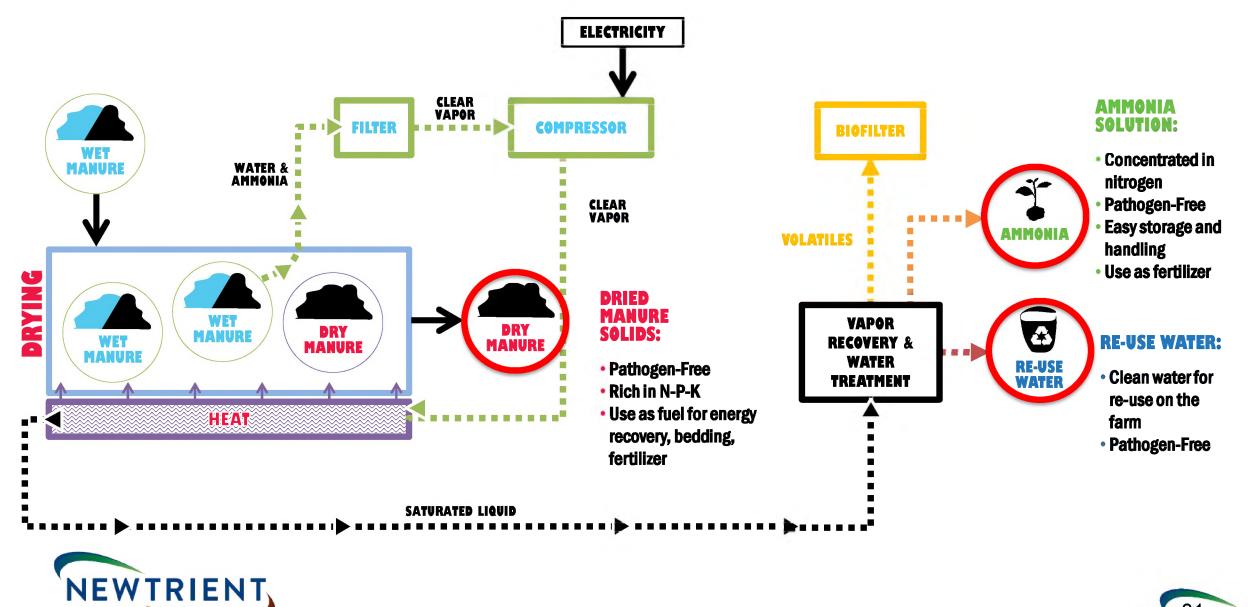
Non-Digester Technologies for Significant GHG Reduction

• Concentration and further treatment

• HTC

• Gasification

• Evaporative Systems


Evaporative Process

- What is Evaporative Processing:
 - Raw manure to dewatered and dried solids as one process
 - Produces liquid ammonia and clean water
- Why is Evaporative Processing of interest:
 - Targeted CapEx & OpEx costs are comparable to existing technologies
 - Targeted Byproducts have a high market value
- Status of Technology and Next Steps:
 - Very early in the development process
 - Next step is pilot project to validate design

DAIRY PROCESSOR CONCEPTUAL SCHEMATIC

EVAPORATIVE PROCESS

mnovation. LOW aneady proven teermology with energy efficiency

• Confidence: HIGH due to experience with other equipment and proven technology

guaranteed time and temperature

• Confidence: HIGH due to experience from other equipment and early successful testing

mnovation. MEDIUM teenhologies to separate and concentrate ammonia without chemicals

 Confidence: HIGH/MEDIUM need to evaluate various planned approaches and validate early data so that maximum efficiency is achieved in regard to clean water and ammonia concentrate paths

mnovation. MEDIUM series of phase separators and coolers for efficient treatment

• Confidence: **HIGH** due to experience with similar equipment, but present concern associated with above ammonia/water split

AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

Challenges to Implementation & Adoption

- ✓ The commodity pricing of milk
- ✓ The commodity nature of the products produced from manure
- ✓ The logistical difficulties of returning nutrients to their source
- \checkmark The lack of incentives for adoption
- ✓ Uncertainty around technology operation and impact of farm operations
- ✓ The regulatory and infrastructure hurdles
- ✓ Undeveloped markets for innovative and leading edge products

AGENDA:

- Introduction and mission
- Integrated manure treatment systems and resources for development
- Technologies for treating manure
- Putting the pieces together
- Products and markets
- Non-digester technologies for significant GHG reduction
- Challenges to implementation and adoption
- Recommendations for meeting the GHG goals in California

Recommendations for Meeting the GHG Goals in California

- ✓ Provide practical funding for system & product development that goes beyond basic research
- ✓ Provide long term incentives to support project economics
- ✓ Review inter-agency dairy policy review to avoid conflicting policies
- ✓ Look for supply chain or regional solutions, not just individual dairies
- ✓ Fund market research and promotional support for manure derived products
- ✓ Expand product return with environmental and tax credits that support these projects

California 1383 Non-Digester Subgroup

For Additional Information: Mark Stoermann mstoerm@newtrient.com

