

CHICO Regenerative AINABLE OPMENT Initiative

PLEASE NOTE:

Any persons requesting outside use, reference, or reproduction of information presented in these slides must receive permission from the author prior to doing so. SB 1383 Subgroup Meeting Fostering Markets for Non-Digester Projects Composting Dairy Manure Issues related to GHG emissions

> Cynthia A. Daley, Ph.D., Regenerative Ag Initiative/ Organic Dairy Program College of Agriculture California State University, Chico

CSU Chico INSTITUTE FOR SUSTAINABLE DEVELOPMENT REGENERATIVE INITIATIVE

CSU Chico	
NSTITUTE FOR	REGENERATIVE
SUSTAINABLE	AGRICULTURE
DEVELOPMENT	INITIATIVE

- We educate
- We inquire
- We actively engage
- We facilitate shifts in thinking

Regenerative farming practices build/enhance soil carbon

A mere 2% increase in the carbon content of the planet's soil could offset 100% of all greenhouse gas emissions going into the atmosphere..."

Dr. Rattan Lal, Ohio State University Soil Scientist

Major types and causes of soil degradation

Source: FAO/UNEP

COMPOSTING PROCESS

KEY FACTORS TO COMPOSTING

C:N Ratio	• The range between 25:1 to $40:1 \rightarrow$ efficient process
Surface Area & Particle Size	The smaller the size the faster the process
Aeration	Air circulation enhances aerobic decomposition
Porosity	Spaces between particle enable supply of oxygen
Moisture Content	Optimum moisture content is 50% to 60%
Temperature	Optimum temperature range is between 32°to 60° C
pH of M aterial	Optimum pH ranges between 6.5 to 7.5
Nutrients	Adequate levels of P and K are important
Toxic Substance	Heavy metals are toxic to thermophilic bacteria

FIGURE 1 Temperature changes in an average compost pile 160 140 Active Curing Temperature °F 120 phase phase 100

Composting is a biological process

Table 1.1 Microbial population changes during composting

Organism	Mesophil ic Stage	Thermophilic Stage	Stabilization/ Curing Stage	No. Species
	(CFU g ¹ dry mass)			Present
Bacteria Mesophile Thermophile	10 ⁸ 10 ⁴	10 ⁶ 10 ⁹	10 ¹¹ 10 ⁷	6 1
Actinomycetes Thermophilic	104	10 ⁸	10 ⁵	14
Mesophilic Thermophilic	10 ⁶ 10 ³	10 ³ 10'	10 ⁵ 10 ⁶	18 16

Volume shrink

When is it finished?

- Color is dark brown
- Crumbly, loose, and humus like
- Earthy smell
- Contains no recognizable feedstocks
- Shrunk to 1/3 it's original volume

How compost works on-farm

How compost works on-farm

How compost works on-farm

Aerated Static Pile

Aerated windrows of material

Rectangular agitated beds

In-vessel Composters

Physical Benefits of Compost

- Improves soil structure and porosity
- Increases gas and water permeability
- Improves water holding capacity
- Reduces erosion

sand particle

The interaction of soil particles, biology & biochemistry

Soil Mineral, Organic Matter, Microorganism Interactions, P.M. Huang (2004)

Soil Aggregation

Conventional Till

No-Till

Minimum till

Conventional Till

No-Till

Pasture

Chemical Benefits of Compost

- Modifies soil pH
- Neutralizes pH
- Acts as a buffer
- Improves cation exchange (holds nutrients longer)
- Makes nutrients more available to plants

Biological Benefits of Compost

- Soil probiotic
- Rich in bacteria, protozoa, actinomycetes, and fungi
- Biology makes nutrients more available to plants
- Suppresses plant disease

Mycorrhizae Fungus

Sinks for Global Carbon Emissions

Annual sink absorption of human carbon emissions (Gt CO2)

Nutrient Cycling in Agroecosystems

June 2005, Volume 72, <u>Issue 2</u>, pp 173–187 | <u>Cite as</u>

Quantifying the Reduction of Greenhouse Gas Emissions as a Resultof Composting Dairy and Beef Cattle Manure

Authors

Authors and affiliations

E. Pattey 🖂 , M. K. Trzcinski, R. L. Desjardins

Nutrient Cycling in Agroecosystems

June 2005, Volume 72, <u>Issue 2</u>, pp 173–187 | <u>Cite as</u>

Quantifying the Reduction of Greenhouse Gas Emissions as a Resultof Composting Dairy and Beef Cattle Manure

Authors

Authors and affiliations

E. Pattey 🖂 , M. K. Trzcinski, R. L. Desjardins

Nutrient Cycling in Agroecosystems

June 2005, Volume 72, <u>Issue 2</u>, pp 173–187 | <u>Cite as</u>

Quantifying the Reduction of Greenhouse Gas Emissions as a Resultof Composting Dairy and Beef Cattle Manure

Authors

Authors and affiliations

E. Pattey 🖂 , M. K. Trzcinski, R. L. Desjardins

Soil is a methane sink

Soil carbon - can it save agricultures bacon? Christine Jones, PhD www.amazingcarbon.com

Aerobic soils are net sinks for methane, due to the presence of methanotrophic bacteria, which utilize methane as their sole energy source (Dunfield 2007).

Soil is a methane sink

Professor Mark Adams, Dean of the Faculty of Agriculture at Sydney University, found that one hectare of pasture land could oxidize as much methane as emitted by 162 head of cattle in an entire year (Cawood 2009).

The highest methane oxidation rate recorded in soil to date has been 137mg/m₂/day (Dunfield 2007) which, over one hectare, equates to the absorption of the methane produced by approximately 1000 head of cattle.

Burying carbon

The "carbon farming" technique restores overgrazed rangelands into fertile fields by using photosynthesis to pull in carbon dioxide from the atmosphere and store it in the soil.

COMPOST

PHOTOSYNTHESIS

Green waste, everything from household scraps to cow manure, creates a nutrient-rich compost.

Plants draw in carbon dioxide from the atmosphere.

2

Through photosynthesis, oxygen is released and carbon is transferred to the soil through the plants' roots.

netisted a state of a state of the second second second state

• A thin layer of compost stimulates plant growth.

Research has shown that carbon is stored in the ground for at least six years and possibly up to several decades.

Rangeland has significant potential to sequester carbon

 Rangelands have a large capacity to store C in soil
Rangelands cover 22 million hectares in CA (40-50% of our state's land mass).

"By changing grazing practices - we could sequester enough carbon to reverse atmospheric carbon to preindustrial levels" Christine Jones

Carbon Marin Project

COVERING 5% OF CALIFORNIA'S GRAZING LANDS WITH COMPOST

COULD CAPTURE A YEAR'S WORTH OF CARBON EMISSIONS

Carbon Impact by Field Treatment Carbon Sequestration (kg C / ha /year)

David C. Johnson- NMSU Institute for Sustainable Agricultural Research (ISAR) davidcjohnson@nmsu.edu

New Mexico State University

lew Mexico State Universi

Regenerative Agriculture as a solution to Climate Change

Cover crops, green manure & crop rotation

No-till/ Minimum Tillage

Compost and animal manures.

Managed Adaptive Multi-paddock

Richard Teague, et al., Texas A&M University

The role of ruminants in reducing agriculture's carbon footprint in North America Journal of Soil & Water Conservation (2016) 71(2), 156 - 164

Figure 2

Hypothetical North American net greenhouse gas (GHG) emission scenarios for: (1) current agriculture; (2) current agriculture with 50% current ruminants; (3) 25% conservation cropping and adaptive multipaddock (AMP) grazing with current numbers of ruminants; (4) 50% conservation cropping and AMP grazing with current numbers of ruminants; and (5) 100% conservation cropping and AMP grazing with current numbers of ruminants.

Thank you.