(Page 1 of 2)

State of California AIR RESOURCES BOARD

EXECUTIVE ORDER M-2-382 Relating to Certification of New Motorcycles

HONDA MOTOR CO., LTD.

Pursuant to the authority vested in the Air Resources Board by the Health and Safety Code, Division 26, Part 5, Chapter 2; and

Pursuant to the authority vested in the undersigned by Health and Safety Code Sections 39515 and 39516 and Executive Order G-45-9;

IT IS ORDERED AND RESOLVED: That the following engine and exhaust emission control systems produced by the manufacturer are certified as described below for four-stroke gasoline-powered motorcycles:

Model Year: 2001

Engine Family	Displacement Cubic Centimeters	Class	Exhaust Emission Control Systems & Special Features
1HNXC0.08AAA	80	1	Engine Modification

Vehicle models and transmissions are listed on the attachment. Production motorcycles shall be in all material respects the same as those for which certification is granted.

The following are the exhaust emission standards and certification emission values for this engine family:

Hydrocarbons	Hydrocarbons	Carbon Monoxide	Carbon Monoxide
(Standard)	(Certification)	(Standard)	(Certification)
Grams per	Grams per	Grams per	Grams per
Kilometer	Kilometer	Kilometer	Kilometer
1.0	0.7	12	7

BE IT FURTHER RESOLVED: That the Executive Officer has been provided all material required to demonstrate certification compliance with the Board's emission control system warranty regulations (Title 13, California Code of Regulations, Section 2035 et seq.).

BE IT FURTHER RESOLVED: That the listed vehicle models also comply with "California Evaporative Emission Standards and Test Procedures for 2001 and Subsequent Model Motor Vehicles," as required by Section 1976, Title 13 of the California Code of Regulations.

BE IT FURTHER RESOLVED: That these motorcycles are found exempt from compliance with the Air Resources Board's "Specifications for Fill Pipes and Openings of Motor Vehicle Fuel Tanks" pursuant to Executive Order G-70-16-E.

Vehicles certified under this Executive Order must conform to all applicable California emission regulations.

Executed at El Monte, California this 3/ day of July 2000.

1611

R. B. Summerfield, Chief

Mobile Source Operations Division

2001 HONDA Motorcycle

E.O.#: M-2-382 Section: 7 Page:6 Issued: 2000/05/16

Revised:

Engine Family: 1HNXC0.08AAA

Motorcycle Model Summary Form

65. Model Designation	66. Worst Case	67. Disp. (cc)	68. Bore / Stroke (mm)	69. Basic Ignition Timing (degrees)	70. Power (kW)	71. Rated Speed (RPM)	72. Rated Torque (Nm)	73. Rated Speed (RPM)
CH80	X	80	49.5 / 41.4	18 (BTDC)	3.7	7500	5.9	5000
СНВО	**						-	-
								
						-		-
				A TOP OF THE PARTY			2	

65.	74.	75.	76.	77.	78. Full Weight	79. Trans.	80. N/V
Model Designation	EIM (kg)	Loaded Vehicle Weight Range (kg)	Road Load (nt)	Total Vehicle Mass (kg)	with All Factory Options (kg)	Туре	=
			100.0	175	175	A2	118.9
CH80	170	166 - 175	109.0	1/3	2.0		
				13.			
			THE REAL PROPERTY.	100000			1

E.O.#: M-2-382 Section: 7 Page:1 Issued: 2000/05/16

Revised:

Motorcycle Engine Family Information Form

American Honda Moto	Certification Assistant, or Co., Inc. Mail Stop 500 ., Torrance CA 90501-2746 3-3417 Fax: (310)783-3510	Certification Department -2C-8A E-Mail: Julie_Peck@ahm.honda.co	om .
Model Year: 2001		10. Displacement (cc): 80	
Process Code: New new correction, rev	rised, r/c, f/f, etc.)	11. Number of Cylinder: 1	
Engine Family: 1HNXC	CO.08AAA	12. Cylinder Arrangement:	
50s Eng. Code: 1	N/A	13. Cylinder Head Configu	ration: OHV/OHC
49s Eng. Code: Calif. Eng. Cod		14. Type of Cooling: Air	Cooled
Emission Control Sys	tem: EM	15. Combustion Cycle: Ott	20
Calif. Designated St	andard (g/km) : N/A	16. Method of Aspiration:	Natural
	HC+NOx	17. Fuel System: Carburet	ors
Project Annual Sales New Technology: f ves, cite the com	CONETDENTIAL	18. Number of Catalytic C	Converters: N/A
he submittal documen	nt: N/A		
	nt: N/A	Tamper Resistance Method (or N/A)	Method Approve
he submittal document Adjustable Paramete	nt:N/A ers: Adjustable Range		Method Approve
he submittal document Adjustable Paramete Parameters(s) Carburetor Pilot Screw	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A)	
he submittal document Adjustable Parameters (s) Carburetor Pilot Screw AECDs in the Emissi	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A) Limiter cap	
he submittal document Adjustable Paramete Parameters(s) Carburetor Pilot Screw	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A)	
he submittal document Adjustable Parameters (s) Carburetor Pilot Screw AECDs in the Emissi	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A) Limiter cap	
he submittal document Adjustable Parameter Parameters(s) Carburetor Pilot Screw AECDs in the Emissi Exhaust System AECDs In System:	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A) Limiter cap Evaporative System AECDs In System:	
he submittal document Adjustable Parameter Parameters(s) Carburetor Pilot Screw AECDs in the Emissi Exhaust System AECDs In System:	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A) Limiter cap Evaporative System AECDs In System:	N/A
he submittal document Adjustable Parameter Parameters(s) Carburetor Pilot Screw AECDs in the Emissi Exhaust System AECDs In System:	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A) Limiter cap Evaporative System AECDs In System:	N/A
he submittal document Adjustable Parameter Parameters(s) Carburetor Pilot Screw AECDs in the Emissi Exhaust System AECDs In System:	nt:N/A ers: Adjustable Range (or N/A) Limited to 7/8 turn leaner side only	(or N/A) Limiter cap Evaporative System AECDs In System:	N/A

E.O.#: M-2-382 Section: 7 Page:4

Issued: 2000/05/16

Revised:

Engine Family: 1HNXC0.08AAA

Motorcycle Test Information Form

- 27. Are you carrying over test results from a previously certified family? ⊠ Yes □ No
 - a) If yes, indicate family name: FHN008041DX
 - b) Is the family being certified identical to the family from which the data is being carried over? Yes.
- 28. Model Designation of Test Vehicle: CH80
- 29. Test Information Number: 110
- 30. Vehicle ID: 85AD-01
- 31. Service Accumulation Duration (km): 6042
- 32. Maximum Rated Power (kW @ RPM): 3.7 @ 7500
- 33. Displacement (cc): 80
- 34. Certification Fuel: Indolene
- 35. Test Data Set: 1

- 36. Road Load(nt): 109.0
- 37. Inertia Mass(kg): 170
- 38. N/V: 118.9
- 39. Evap Bench Test Method Approval:

Data: March 9, 1983

Reference: 17.01.01-1(ARB) & 17.01.02-2(ARB) thru 17.01.02-12(ARB) in 1999 Model Year Application

- 40. Unscheduled Maintenance: 🗌 Yes 📈 No
- 41. If yes Vehicle Log Provided: N/A
- 42. Exhaust Emission Deterioration Factor

		Emission Values				
Test Number	System Kilometers	HC	00	NOx	HC+NOx	
1	2555	0.81	8.1			
2	4101	0.73	7.7			
3	4128	0.71	8.7			
4	6015	0.72	6.9			
5	6042	0.72	7.0			
6						
7						
Interpolate	d Values at 6,000 k	2000	HC = 0.6981 HC+NOx =	co = 7.3	1970	
Extrapolate	d Values at 12,000 k		HC = 0.5502	co = 5.	0207	

Regular DF	X
Modified DF	22
If Different Specify Veh	t Vehicle icle ID

43. Emission Test Results:

Official Test Results		Test 1	Test 2	Test 3	Test 4
g/km	α	7.0			3.2
g/km	(CO ₂	32.2			
g/km	HC	0.72			
g/km	NOx				
g/km	HC+NOx				
g/km	Evap.	1.13			

Deterior Facto	
1.000	(0.698)
	-
1.000	(0.788)
	7
0.0	

(): Calculated Value

44. Certification Levels:

g/km	00	(7)	
g/km	HC	(0.7)	34
g/km	HC+NOx		
a/test	Evap.	1.1	

Application Processed by: Joseph Jegede Date: 7/28/2000 Reviewed by: Them Date: 7/28/20