# California Environmental Protection Agency Air Resources Board

# Detailed California-Modified GREET Pathway for Liquefied Natural Gas (LNG) from Dairy Digester BioGas



**Stationary Source Division** 

Release Date: July 20, 2009

Version 1.0



The ARB acknowledges contributions from the Life Cycle Associates (under contract with the California Energy Commission), and the California Integrated Waste Management Board during the development of this document.

When reviewing this document, please submit comments directly to:

Anil Prabhu: <a href="mailto:aprabhu@arb.ca.gov">aprabhu@arb.ca.gov</a>
Chan Pham: <a href="mailto:cpham@arb.ca.gov">cpham@arb.ca.gov</a>
Alan Glabe: <a href="mailto:aglabe@arb.ca.gov">aglabe@arb.ca.gov</a>

These comments will be compiled, reviewed, and posted to the LCFS website in a timely manner.

## **TABLE OF CONTENTS**

| Table of Contents                                                  | i  |
|--------------------------------------------------------------------|----|
| List of Figures                                                    | ii |
| List of Tables                                                     |    |
| Summary                                                            | 1  |
| CA-GREET Model Pathway for LNG from North American Natural Gas     |    |
| Digester Biogas Recovery                                           |    |
| Digester BioGas - Processing                                       |    |
| Natural Gas Transport                                              |    |
| Natural Gas Liqueraction to LNG                                    |    |
| LNG Transport and Distribution                                     |    |
| LNG Tank to Wheel                                                  |    |
| APPENDIX A                                                         | 9  |
| SECTION 1. DAIRY DIGESTER BIOGAS RECOVERY                          | 10 |
| 1.1 Energy Use for Dairy Digester Biogas Recovery                  | 10 |
| 1.2 GHG Emissions from Dairy Biogas Recovery                       |    |
| SECTION 2. DIGESTER BIOGAS PROCESSING                              |    |
| 2.1 Energy Use for Digester Biogas Processing                      | 12 |
| 2.2 GHG Emissions from Digester Biogas Processing                  | 12 |
| SECTION 3. NATURAL GAS TRANSPORT & DISTRIBUTION                    | 14 |
| 3.1 Energy Use for NG Transport to a LNG Station                   |    |
| 3.2 GHG Emissions from Natural Gas Transport to a LNG Station      | 14 |
| SECTION 4. NATURAL GAS LIQUEFACTION TO LNG                         | 15 |
| 4.1 LNG Liquefaction Energy Use                                    | 15 |
| 4.2 GHG Emissions from Natural Gas Liquefaction to LNG             |    |
| SECTION 5. LNG TRANSPORT AND DISTRIBUTION                          |    |
| 5.1 Energy Consumption for transport of LNG to a Refueling Station |    |
| 5.2 GHG Emissions from Truck Transport of LNG                      |    |
| SECTION 6. GHG EMISSIONS FROM VEHICLES                             |    |
| 6.1 GHG Emissions from Vehicles                                    |    |
| APPENDIX B                                                         |    |
| LIQUEFIED NATURAL GAS (LNG) FROM DAIRY DIGESTER BIOGAS PAT         |    |
| INPUT VALUES                                                       | 19 |

## **LIST OF FIGURES**

| Figure 1. Discrete Components of the Landfill Gas to LNG Pathway                                    | 3  |
|-----------------------------------------------------------------------------------------------------|----|
| LIST OF TABLES                                                                                      |    |
| Table A. Summary of Energy Consumption and GHG Emissions per mmBtu of LNG                           |    |
| Produced from Digester Biogas  Table B. Total Energy Consumption for Dairy Digester Biogas Recovery | 5  |
| Table B. Total Energy Consumption for Dairy Digester Biogas Recovery                                | 6  |
| Table C. Total GHG Emissions from Dairy Digester Bio Gas Recovery                                   |    |
| Table D. Total Energy Consumption for Dairy Digester Biogas Processing                              | 6  |
| Table E. Total GHG Emissions from Processing Dairy Digester Biogas                                  |    |
| Table F. Energy Use for NG Transport to a Liquefaction Plant                                        |    |
| Table G. GHG Emissions from Natural Gas Transport to a Liquefaction Plant                           |    |
| Table H. Energy Use for NG Liquefaction                                                             | 7  |
| Table I. Total GHG Emissions Associated with Natural Gas Liquefaction                               |    |
| Table J. Energy Use for LNG Transport and Distribution                                              |    |
| Table K. Total GHG Emissions Associated with LNG Transport and Distribution in                      |    |
| California                                                                                          | 8  |
| Table L. Tank to Wheel GHG Emissions for LNG                                                        | 8  |
| Table 1.01 Total Energy Consumption from Direct Energy Consumption for Biogas                       |    |
| Recovery and Transport                                                                              |    |
| Table 1.02 Total GHG Emissions from Biogas Recovery                                                 |    |
| Table 2.01 Total Energy Consumption for Digester Biogas Processing                                  |    |
| Table 2.02 Total Direct and Upstream GHG Emissions for Biogas Processing, g/mmB                     |    |
|                                                                                                     |    |
| Table 3.01 Energy Use for NG Transport to a LNG Station                                             |    |
| Table 3.02 Direct and Upstream Emissions for NG Transport to a LNG Station                          |    |
| Table 4.01 Total Energy Use for Liquefaction.                                                       |    |
| Table 4.02 GHG Emission Summary for Liquefaction                                                    | 15 |
| Table 5.01 Direct, Upstream and Total Energy Use for Heavy Duty Diesel Truck                        |    |
| Delivering LNG from LNG Plants to Refueling Stations                                                |    |
| Table 5.02 Total GHG for LNG Truck Transport from LNG Plants to Stations                            |    |
| Table 6.01 TTW Emissions for LNG Derived from Dairy Digester Biogas                                 | 18 |
|                                                                                                     |    |

## **SUMMARY**

#### **CA-GREET Model Pathway for LNG from North American Natural Gas**

Well-To-Tank (WTT) Life Cycle Analysis of a fuel pathway includes all steps from feedstock recovery to final finished fuel. Tank-To-Wheel (TTW) analysis includes actual combustion of fuel in a motor vehicle for motive power. Together, WTT and TTW analysis are combined to provide a total Well-To-Wheel (WTW) analysis. This document therefore presents a WTW energy use and greenhouse gas (GHG) emissions generated during the process of producing and using liquefied natural gas (LNG) from dairy digester biogas in a heavy-duty vehicle.

A Life Cycle Analysis Model called the **Gr**eenhouse gases, **R**egulated **E**missions, and **E**nergy use in **T**ransportation (GREET)<sup>1</sup> developed by Argonne National Laboratory forms the core basis of the methodology used in this document. This model was modified and updated to reflect California specific conditions and labeled the CA-GREET model. Using this model, staff developed several fuel pathway documents available on the Low Carbon Fuel Standard website (http://www.arb.ca.gov/fuels/lcfs/lcfs.htm).

One pathway not available in the original Argonne model is the diary digester biogas to CNG fuel pathway. This was incorporated into the CA-GREET model with assistance from Life Cycle Associates. A variation of this pathway is to liquefy the gas (and not compress as in the CNG pathway) and this pathway document includes additional steps such as the liquefaction, transport and use of Liquefied NG (LNG) derived from dairy digester biogas. For completeness, necessary components have been transferred from the dairy digester biogas to CNG pathway document published in July 2009.

The pathway includes gas recovery from digesters in California, transport and processing of the recovered biogas, transport and liquefaction in California LNG plants, and its use in a heavy duty vehicle. For this document, dairy digester gas is modeled as being produced in lagoons. Figure 1 shows the discrete components of the LNG from dairy digester biogas pathway. This document presents all assumptions, and step by step calculations of energy consumption and GHG emissions for this LNG pathway. Most of the components of this pathway have been transferred from the dairy digester biogas pathway. Users are directed to this document as only summaries for these steps are provided in this document.

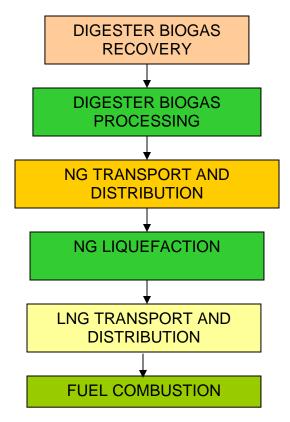



Figure 1. Discrete Components of the Dairy Digester BioGas to LNG Pathway.

Several general descriptions and clarification of terminology used throughout this document are:

- CA-GREET employs a recursive methodology to calculate energy consumption and
  emissions. To calculate WTT energy and emissions, the values being calculated are
  often utilized in the calculation. For example, crude oil is used as a process fuel to
  recover crude oil. The total crude oil recovery energy consumption includes the
  direct crude oil consumption AND the energy associated with crude recovery (which
  is the value being calculated).
- Btu/mmBtu is the energy input necessary in Btu to produce or transport one million Btu of a finished (or intermediate) product. This description is used consistently in CA-GREET for all energy calculations. There are 1,055 MJ in one mmBtu of energy, so in order to convert one million Btu into MJ, divide the million Btu by 1055.
- gCO<sub>2</sub>e/MJ provides the total greenhouse gas emissions on a CO<sub>2</sub> equivalent basis per unit of energy (MJ) for a given fuel. Methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) are converted to a CO<sub>2</sub> equivalent basis using IPCC global warming potential values and included in the total.

- CA-GREET assumes that VOC and CO are converted to CO<sub>2</sub> in the atmosphere and includes these pollutants in the total CO<sub>2</sub> value using ratios of the appropriate molecular weights.
- Process Efficiency for any step in CA-GREET is defined as:

Efficiency = energy output / (energy output + energy consumed)

Table A below provides a summary of the results for this LNG pathway. The WTW analysis for LNG indicates that **420,267** Btu of energy is required to produce 1 (one) mmBtu of available fuel energy. From a GHG perspective, **28.27** gCO<sub>2</sub>e/MJ of GHG emissions are generated during the production and use of LNG (derived from dairy digester biogas) in a heavy-duty vehicle.

Note that rounding of values has not been performed in several tables in this document. This is to allow stakeholders executing runs with the GREET model to compare actual output values from the CA-modified model with values in this document.

Table A. Summary of Energy Consumption and GHG Emissions per mmBtu of LNG

Produced from Digester Biogas

|                                              | Energy<br>Required<br>(Btu/mmBtu) | GHG<br>Emissions<br>(gCO <sub>2</sub> e/MJ) |
|----------------------------------------------|-----------------------------------|---------------------------------------------|
| Well-to-Tank                                 |                                   |                                             |
| Digester Gas<br>Recovery and<br>Transport    | 22,209                            | 1.17                                        |
| Digester Gas<br>Processing to NG             | -867,258                          | -48.02                                      |
| NG Transport & Distribution                  | 1,350                             | 0.45                                        |
| Liquefaction at LNG<br>Plants                | 265,616                           | 15.79                                       |
| LNG Transport and Distribution               | 4,679                             | 0.38                                        |
| Total Well-to-Tank                           | -579,733                          | -30.23                                      |
| Tank-to-Wheel                                |                                   |                                             |
| Carbon in Fuel                               | 1,000,000                         | 56.00                                       |
| Vehicle CH <sub>4</sub> and N <sub>2</sub> O |                                   | 2.50                                        |
| Total Tank-to-<br>Wheel                      | 1,000,000                         | 58.50                                       |
| Total Well-to-Wheel                          | 420,267                           | 28.27                                       |

Note: percentages may not add to 100 due to rounding

Values, assumptions, emission factors used in this document have been derived from other pathway documents published on the Low Carbon Fuel Standard website. They include pathway documents for electricity, NA NG to CNG, Dairy digester biogas to CNG, NANG to LNG, and Landfill gas to CNG. Please refer to these documents for additional details.

The following sections provide summaries of each of the WTT components as well as the TTW values. Expanded details are provided in Appendix A. A table of all input values is provided in Appendix B.

#### **Digester Biogas Recovery**

Tables B and C provide a summary of the energy consumption (mainly form electricity used in blowers) and associated GHG emissions from digester biogas recovery. Calculation details are provided in Appendix A.

Table B. Total Energy Consumption for Dairy Digester Biogas Recovery

| Fuel Type   | Btu/mmBtu |
|-------------|-----------|
| Electricity | 22,209    |

Table C. Total GHG Emissions from Dairy Digester Bio Gas Recovery

|               | GHG<br>gCO₂e/mmBtu |
|---------------|--------------------|
| VOC           | 0.176              |
| CO            | 0.646              |
| CH4           | 2.441              |
| N2O           | 0.029              |
| CO2           | 1,163              |
| Total         | 1,234              |
| Total in g/MJ | 1.17               |

#### **Digester BioGas - Processing**

Tables D and E provide the energy consumption and associated GHG emissions from processing of dairy digester biogas. Calculation details are provided in Appendix A.

Table D. Total Energy Consumption for Dairy Digester Biogas Processing

| Fuel Type         | Btu/mmBtu  |
|-------------------|------------|
| Direct Biogas Use | 145,100    |
| Electricity       | 131,145    |
| Biogas Credit     | -1,143,504 |
| Total Energy      | -867,258   |

Table E. Total GHG Emissions from Processing Dairy Digester Biogas

|                   | GHG         |
|-------------------|-------------|
|                   | gCO₂e/mmBtu |
| VOC               | 1.196       |
| CO                | 7.30        |
| CH <sub>4</sub>   | 17.708      |
| N <sub>2</sub> O  | 0.387       |
| CO <sub>2</sub>   | -51,237     |
| Total             | -50,663     |
| Total in gCO₂e/MJ | -48.02      |

#### **Natural Gas Transport**

Tables F and G summarize energy consumption and GHG emissions from natural gas transport via pipeline to a liquefaction plant in CA. Calculation details are provided in Appendix A.

Table F. Energy Use for NG Transport to a Liquefaction Plant

Total T&D Energy Use = 1,350 Btu/mmBtu

Table G. GHG Emissions from Natural Gas Transport to a Liquefaction Plant

| GHG<br>gCO₂e/mmBtu | VOC  | СО    | CH₄    | N <sub>2</sub> O | CO <sub>2</sub> | Total  |
|--------------------|------|-------|--------|------------------|-----------------|--------|
| Natural Gas        | 0.04 | 0.101 | 0.131  | 0.001            | 28.64           | 32.5   |
| Electricity        | 0    | 0.002 | 0.006  | 0                | 3.07            | 3.257  |
| Leakage            | 0    | 0     | 17.548 | 0                | 0               | 438.71 |
| Total              | 0.04 |       | 17.69  | 0.001            | 32              | 474.47 |
| Total in g/MJ      |      |       |        |                  |                 | 0.45   |

#### **Natural Gas Liquefaction to LNG**

Tables H and I provide a summary of energy consumption and GHG emissions from natural gas liquefaction in California LNG plants. Calculation details are provided in Appendix A.

Table H. Energy Use for NG Liquefaction

Total Energy Use for Liquefaction is 265,616 Btu/mmBtu

Table I. Total GHG Emissions Associated with Natural Gas Liquefaction

|       | CO <sub>2</sub> | CH₄  | N <sub>2</sub> O | GHG<br>gCO₂e/mmBtu | GHG<br>gCO₂e/MJ |
|-------|-----------------|------|------------------|--------------------|-----------------|
| Total | 15,717          | 32.9 | 0.389            | 16,655             | 15.79           |

#### **LNG Transport and Distribution**

LNG is transported and distributed by trucks to the refueling stations. Summaries of the energy use and corresponding GHG emissions from transport and distribution are provided in Tables J and K respectively.

Table J. Energy Use for LNG Transport and Distribution

| 79 Btu/mmBtu |
|--------------|
|--------------|

Table K. Total GHG Emissions Associated with LNG Transport and Distribution in California

|       | CO <sub>2</sub> | CH₄   | N <sub>2</sub> O | GHG<br>gCO₂e/mmBtu | GHG<br>gCO₂e/MJ |
|-------|-----------------|-------|------------------|--------------------|-----------------|
| Total | 378             | 0.879 | 0.009            | 403                | 0.38            |

#### LNG Tank to Wheel

This section provides a summary of TTW GHG emissions from combusting LNG in a heavy-duty vehicle. This includes CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O emissions generated during combustion. Details of calculations are provided in Appendix A.

Table L. Tank to Wheel GHG Emissions for LNG

TTW = Vehicle GHG = 58.5 gCO<sub>2</sub>e/MJ

## **APPENDIX A**

#### **SECTION 1. DAIRY DIGESTER BIOGAS RECOVERY**

#### 1.1 Energy Use for Dairy Digester Biogas Recovery

The first step in the dairy digester biogas pathway is biogas recovery and transport to the point of processing. Because it is assumed that the processing of the biogas into pipeline quality gas will occur at the dairy, these two steps are combined into one, without an additional step for transport to the point of processing.

An electric blower is used to capture the biogas that is produced in the lagoon. The assumed energy required to recover 1 mmBtu of biogas is 11,124 Btu, which represents a large, unmixed lagoon. It should be noted that this energy consumption figure is per million Btu of biogas captured by the collection system, not per million Btu of biogas produced, as lagoon capture systems do not have 100 % capture efficiency.

The figure of 11,124 Btu/mmBtu is the direct energy consumption for the biogas recovery step. This is not the total energy required however, since CA-GREET accounts for the "upstream" energy associated with each of the fuels utilized. The total energy associated with the 11,124 Btu of electricity includes the energy used to produce the electricity and the energy used to recover and deliver the feedstock to the electricity generating plants.

Table 1.01 provides a summary of the total energy consumption for biogas recovery and transport. Please refer to the dairy digester biogas to CNG pathway for complete details of the calculation.

Table 1.01 Total Energy Consumption from Direct Energy Consumption for Biogas

Recovery and Transport

| Fuel Type                        | Formula           | Btu/mmBtu |
|----------------------------------|-------------------|-----------|
| Electricity                      | A (B + C)/ $10^6$ | 22,209    |
| Total energy for Biogas recovery |                   | 22,209    |

#### 1.2 GHG Emissions from Dairy Biogas Recovery

The emission calculation methodology is analogous to the energy calculations. First, the direct emissions are calculated and then the upstream emissions (due to recovery and processing of each direct fuel used) are added. Since the only fuel being used here is electricity which has no direct emissions, only the upstream emissions are accounted for in this step. Table 1.02 provides a summary of the total GHG emissions produced during biogas recovery and transport. Complete details are available in the dairy digester biogas to CNG pathway document.

Table 1.02 Total GHG Emissions from Biogas Recovery

|             | voc   | со    | CH₄   | N₂O   | CO <sub>2</sub> | CO <sub>2</sub> * | Total<br>GHG<br>gCO₂e/<br>mmBtu | Total<br>GHG<br>gCO₂e/<br>MJ |
|-------------|-------|-------|-------|-------|-----------------|-------------------|---------------------------------|------------------------------|
| Electricity | 0.176 | 0.646 | 2.441 | 0.029 | 1,163           | 1,164             | 1,234                           | 1.17                         |
| Total       | 0.176 | 0.646 | 2.441 | 0.029 | 1,163           | 1,164             | 1,234                           | 1.17                         |

#### **SECTION 2. DIGESTER BIOGAS PROCESSING**

#### 2.1 Energy Use for Digester Biogas Processing

The next step in the digester biogas to CNG pathway is cleaning the biogas to pipeline quality and compressing it to natural gas distribution pipeline pressures. The methodology to calculate direct and total energy for biogas processing is the same as that to calculate direct and total energy for biogas recovery. Table 2.01 provides details of the total energy consumption to process dairy digester biogas. Complete details ate available from the dairy digester biogas to CNG pathway.

Table 2.01 Total Energy Consumption for Digester Biogas Processing

| Fuel Type                                           | Formula                                                            | Btu/mmBtu  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------|------------|--|--|
| Biogas                                              | 143,504 Btu/mmBtu*(1 + 11124<br>Btu/mmBtu/10 <sup>6</sup> )* 1.000 | 145,100.3  |  |  |
| Electricity                                         | 65,686 Btu/mmBtu*(111,573 + 1,884,989) Btu/mmBtu / 10 <sup>6</sup> | 131,145.4  |  |  |
| Biogas Credit                                       |                                                                    | -1,143,504 |  |  |
| Total Energy Consumption for Biogas Processing -867 |                                                                    |            |  |  |

#### 2.2 GHG Emissions from Digester Biogas Processing

As mentioned above, the only fuel directly combusted during processing is biogas in a thermal oxidizer. A large industrial boiler has been used as a surrogate for the thermal oxidizer in GREET when calculating emissions. The exception is the  $CO_2$  emission factor—biogas fuel properties were utilized for this emission factor. Because the biogas would otherwise have been emitted, a credit is applied as if the emissions occurred as biogenic  $CO_2$ .

Table 2.02 provides the total emissions associated with biogas processing, including the full credit for the biogas that would have otherwise been emitted, based on the carbon content of the emitted biogas as CO<sub>2</sub>. Complete details are available from the dairy digester to CNG pathway.

Table 2.02 Total Direct and Upstream GHG Emissions for Biogas Processing, g/mmBtu

|                      | voc   | со    | CH₄    | N <sub>2</sub> O | CO <sub>2</sub> | CO <sub>2</sub> * | Total<br>GHG<br>gCO₂e/<br>mmBtu | Total<br>GHG<br>gCO₂e/<br>MJ |
|----------------------|-------|-------|--------|------------------|-----------------|-------------------|---------------------------------|------------------------------|
| Biogas<br>Processing | 1.196 | 7.300 | 17.708 | 0.387            | 15,284          | 15,300            | 15,858                          | 15.03                        |
| Biogas<br>Credit     | 0.000 | 0.000 | 0.000  | 0.000            | -66,521         | -66,521           | -66,521                         | -63.05                       |
| Total                | 1.196 | 7.300 | 17.708 | 0.387            | -51,237         | -51,221           | -50,663                         | -48.02                       |

#### SECTION 3. NATURAL GAS TRANSPORT & DISTRIBUTION

#### 3.1 Energy Use for NG Transport to a LNG Station

In this step, we assume the same calculation as detailed in the dairy digester biogas to CNG pathway. It involves transport and distribution of the natural gas by pipeline from the processing plant to a LNG liquefaction facility. For this pathway, it is assumed that the LNG facility is located 50 miles from the biogas processing plant. Complete details are available from the LFG to LNG pathway document.

As illustrated in Table 3.01, the total transport energy is 1,350 Btu/mmBtu

Table 3.01 Energy Use for NG Transport to a LNG Station

Total T&D Energy Use = 800 + 550 = 1,350 Btu/mmBtu

#### 3.2 GHG Emissions from Natural Gas Transport to a LNG Station

The pipeline transport emissions are composed of methane leaks and emissions associated with transporting the natural gas through the pipeline. The pipeline combustion emissions are set by the CA-GREET default energy intensity of 405 Btu/ton-mile and the assumed transport distance of 50 miles. Total emissions are shown in Table 3.02. For complete details, refer to the LFG to LNG pathway document.

Table 3.02 Direct and Upstream Emissions for NG Transport to a LNG Station

|                | voc   | со    | CH₄    | N₂O   | CO <sub>2</sub> | CO <sub>2</sub> * | Total<br>GHG<br>gCO₂e/<br>mmBtu | Total<br>GHG<br>gCO₂e/<br>MJ |
|----------------|-------|-------|--------|-------|-----------------|-------------------|---------------------------------|------------------------------|
| Natural<br>Gas | 0.044 | 0.101 | 0.131  | 0.001 | 28.635          | 28.931            | 32.501                          | 0.0308                       |
| Electricity    | 0.000 | 0.002 | 0.006  | 0.000 | 3.069           | 3.073             | 3.257                           | 0.0031                       |
| Leakage        | 0.000 | 0.000 | 17.548 | 0.000 | 0.000           | 0.000             | 438.71                          | 0.4158                       |
| Total          | 0.04  | 0.10  | 17.69  | 0.001 | 31.70           | 32.00             | 474.47                          | 0.45                         |

#### **SECTION 4. NATURAL GAS LIQUEFACTION TO LNG**

#### 4.1 LNG Liquefaction Energy Use

Complete details for liquefaction are provided in the pathway document for LNG from NA NG and RNG sources Total energy is shown in Table 4.01.

Table 4.01 Total Energy Use for Liquefaction.

| Fuel              | Direct Energy                 | Upstream Energy           | Total Energy |
|-------------------|-------------------------------|---------------------------|--------------|
|                   | 10 <sup>6</sup> *(1/80%)*100% | 6 250,000*(31,144 +       |              |
| Natural Gas       | = 250,000                     | 31,321)/10 <sup>6</sup> = | 265,616      |
|                   |                               | 15,616                    |              |
| Total (Btu/mmBtu) |                               |                           | 265,616      |

Note: 31,144 Btu/mmBtu and 31,321 Btu/mmBtu are NG recovery and processing for LNG (cells F93 and G93) of NG sheet – CA-GREET model

#### 4.2 GHG Emissions from Natural Gas Liquefaction to LNG

For this document, liquefaction energy comes from a mix of NG and electricity, with 100% from NG. The liquefaction efficiency is assumed to be 80%. Results for GHG emissions are similar to the energy calculations in the previous section. Table 4.02 summarizes the results for liquefying dairy digester derived gas.

Table 4.02 GHG Emission Summary for Liquefaction

| Natural Gas | CO <sub>2</sub> | CH₄    | N <sub>2</sub> O | GHG    | GHG   |
|-------------|-----------------|--------|------------------|--------|-------|
| Natural Gas | g/mmBtu         |        |                  | g/MJ   |       |
| Total       | 15,717          | 32.906 | 0.389            | 16,655 | 15.79 |

Example calculation of CO<sub>2</sub> from natural gas combustion:

#### Direct CO<sub>2</sub> from NG combustion in NG turbine

$$\frac{250,000Btu / mmBtu \times 100\% \times 58,179 gCO2 / mmBtu}{10^{6}} = 14,545 g/mmBtu$$

#### Upstream CO<sub>2</sub> of NG

$$\frac{250,000Btu \, / \, mmBtu \, \times (1691 + 1761 + 1237)Btu \, / \, mmBtu}{10^6} = 1,172 \, \, gCO_2 / mmBtu$$

Where all are GREET defaults):

58,179 g CO<sub>2</sub>/mmBtu: emission factor of NG turbine

1,691g CO<sub>2</sub>/mmBtu: NG recovery 1,761 g CO<sub>2</sub>/mmBtu: NG processing

1,237 g CO<sub>2</sub>/mmBtu: NG T&D

#### **SECTION 5. LNG TRANSPORT AND DISTRIBUTION**

#### 5.1 Energy Consumption for transport of LNG to a Refueling Station

Heavy duty trucks distribute the LNG from the liquefaction facility to LNG refueling stations. The energy results are calculated using a 50 mile transport distance from a LNG plant in CA. The main transport inputs are shown below.

- Region: CA region (CA marginal electricity)
- Capacity (15 tons)
- Fuel economy (5 mi/gal)
- Fuel used (diesel)
- Fugitive emissions during storage (0.1% loss/day, CA-GREET default)
- Fugitive emission recovery rate (80% industry practice)
- Distance (50 mi, CA-GREET default)

Table 5.01 summarizes the total energy use for transporting LNG to LNG refueling stations. Complete details are available from the LFG to LNG pathway and the NA NG to LNG pathway.

Table 5.01 Direct, Upstream and Total Energy Use for Heavy Duty Diesel Truck Delivering LNG from LNG Plants to Refueling Stations

| Direct<br>Energy | Upstream<br>Energy | Total Energy |
|------------------|--------------------|--------------|
| 3,               | Btu/mmBtu          |              |
| 4,016            | 663                | 4,679        |

#### **Energy Intensity for Trip to Destination and Return Trip:**

(128,450 Btu/gal)/(5 mi/gal)/15 tons = 1,713 Btu/ton-mi

#### **Direct Diesel Energy**

$$\left\lceil \frac{10^6 \times 1,724g / gal}{80,968Btu / gal \times 454g / lb \times 2,000lbs / ton} \right\rceil \times 50miles \times 1713 \times 2 \frac{Btu}{ton-mile} = 4,016 \text{ Btu/mmBtu}$$

#### **Upstream Diesel Energy**

$$\left[\frac{10^{6} \times 1,724g / gal}{80,968Btu / gal \times 454g / lb \times 2,000lbs / ton}\right] \times 50miles \times 1713 \times 2\frac{Btu}{ton-mile} \times 0.165Btu / Btu = 663$$

#### Btu/mmBtu

(where 0.165 Btu/Btu is Btu energy of diesel consumption per Btu of Btu diesel transported - upstream)

#### 5.2 GHG Emissions from Truck Transport of LNG

Total emissions for LNG transport by truck from the LNG plants is shown in Table 5.02 below.

Table 5.02 Total GHG for LNG Truck Transport from LNG Plants to Stations

| Fuels          | CO <sub>2</sub> | CH₄   | N <sub>2</sub> O | GHG | GHG   |
|----------------|-----------------|-------|------------------|-----|-------|
| rueis          |                 | g/MJ  |                  |     |       |
| Diesel         | 378             | 0.453 | 0.009            | 392 | 0.372 |
| Methane Losses |                 | 0.426 |                  | 11  | 0.01  |
| Total          | 378             | 0.879 | 0.009            | 403 | 0.38  |

Example of calculation CO<sub>2</sub> shown above:

#### **Upstream Diesel CO<sub>2</sub>:**

$$\left[\frac{1,724g/gal}{80,968Btu/gal\times454g/lb\times2,000lbs/ton}\right]\times50miles\times15,813g/mmBtu\times1,713\times2\frac{Btu}{ton-mile}=$$

#### 64 g/mmBtu

where 15,813 g/mmBtu is the upstream CO<sub>2</sub> emissions associated with diesel production (calculated in the *Petroleum* sheet of the CA-GREET model)

#### **Direct Diesel CO<sub>2</sub>**

$$\[ \frac{1,724g / gal}{80,968Btu / gal \times 454g / lb \times 2,000lbs / ton} \] \times 50miles \times (77,809 + 77,912)g / mmBtu \times 1,713 \frac{Btu}{ton-mile} \\ = 313 g/mmBtu CO2$$

Total: 378 g/mmBtu CO<sub>2</sub>

where 77,809 g/mmBtu and 77,912 g/mmBtu are the emission factors from the *EF* sheet of the CA-GREET.

#### **SECTION 6. GHG EMISSIONS FROM VEHICLES**

#### 6.1 GHG Emissions from Vehicles

Vehicle GHG emissions consist of:

- Tailpipe CO<sub>2</sub>
- Tailpipe N<sub>2</sub>O
- Tailpipe CH<sub>4</sub>

In this analysis, heavy duty trucks use LNG. Table 6.01 summarizes the TTW emissions. Complete details are available from the NA NG to LNG pathway.

Table 6.01 TTW Emissions for LNG Derived from Dairy Digester Biogas

| Tailpipe<br>Emissions | CO <sub>2</sub> | CH₄ and<br>N₂O | Total |
|-----------------------|-----------------|----------------|-------|
| gCO <sub>2</sub> e/MJ | 56.0            | 2.5            | 58.5  |

### **APPENDIX B**

## LIQUEFIED NATURAL GAS (LNG) FROM DAIRY DIGESTER BIOGAS PATHWAY INPUT VALUES

| Parameters                        | Units                     | Values        | Note                                           |
|-----------------------------------|---------------------------|---------------|------------------------------------------------|
|                                   | GHO                       | Equivalent    |                                                |
| CO <sub>2</sub>                   |                           | 1             | CA-GREET Default                               |
| CH <sub>4</sub>                   |                           | 25            | CA-GREET Default                               |
| N₂O                               |                           | 298           | CA-GREET Default                               |
| VOC                               |                           | 3.1           | CA-GREET Default                               |
| СО                                |                           | 1.6           | CA-GREET Default                               |
|                                   | Digeste                   | r Gas Recove  | ry                                             |
| Process Efficiency                |                           | 98.9%         | CA-GREET Default                               |
| Natural Gas Leak Rate             |                           | 0.0%          | TIAX Assumption                                |
| Fuel Shares                       |                           |               |                                                |
| Natural Gas                       |                           | 0%            | ARB Assumption                                 |
| Electricity                       |                           | 100%          | ARB Assumption                                 |
| Feed Loss (Leak)                  |                           | 0%            | ARB Assumption                                 |
| Equipment Shares                  |                           |               |                                                |
| Electric Blower                   |                           | 100%          |                                                |
|                                   | Digester                  | Gas Processi  | ing                                            |
| Process Efficiency                |                           | 82.7%         | Assumed the same as LFG                        |
| Natural Gas Leak Rate             | )                         | 0%            | Assumed the same as LFG                        |
| Fuel Shares                       | s                         |               |                                                |
| Bio Gas                           | 6                         | 68.6%         | Assumed the same as LFG                        |
| Electricity                       | /                         | 31.4%         | Assumed the same as LFG                        |
| Equipment Shares                  | ;                         |               |                                                |
| Large Boiler - NG                 | i                         | 100%          | CA-GREET Default                               |
| CO <sub>2</sub> Emission Facto    | r gCO <sub>2</sub> /mmBtu | 58,198        | CA-GREET Default                               |
|                                   | NG I                      | Liquefaction  |                                                |
| NG Liquefaction Efficiency in CA  |                           | 80%           | CA-GREET Default                               |
| Process Fuels Shares              |                           |               |                                                |
| Natural Gas                       |                           | 98%           | CA-GREET Default                               |
| Electricity                       |                           | 2%            | CA-GREET Default                               |
| Remote NG Processing              |                           | 80%           | Excluding gas processing                       |
| Efficiency Process Fuels Shares   |                           | 60%           |                                                |
| Process Fuels Snares              | LNOT                      |               | Assumed the same as LFG                        |
| Tamban Truck Sina                 |                           | ruck Transpor |                                                |
| Tanker Truck Size                 | ton                       | 15<br>50      | fueled by diesel or LNG                        |
| Distance travel                   | Miles                     | 50            | from LNG plants in CA to CA filling stations   |
| E. J. F.                          | <b>D</b> 4° / 1           | 250           | from LNG plants in Baja to CA filling stations |
| Fuel Economy                      | Mi/gal                    | 5             | OA OBEET LA III                                |
| Fugitive Emissions During Storage | %/day                     | 0.1%/day      | CA-GREET default                               |
| Fugitive Emissions Recovery Rate  |                           | 80%           | Industry Practice                              |

<sup>1</sup> GREET Model: Argonne National Laboratory: http://www.transportation.anl.gov/modeling\_simulation/GREET/index.html