

Detailed California-Modified GREET Pathway for Liquefied Natural Gas (LNG) from Landfill Gas

Stationary Source Division Release Date: July 20, 2009

Version 1.0

The Staff of the Air Resources Board developed this preliminary draft version as part of the Low Carbon Fuel Standard regulatory process

The ARB acknowledges contributions from the Life Cycle Associates (under contract with the California Energy Commission), and the California Integrated Waste Management Board during the development of this document.

When reviewing this document, please submit comments directly to: Anil Prabhu: <u>aprabhu@arb.ca.gov</u> Chan Pham: <u>cpham@arb.ca.gov</u> Alan Glabe: <u>aglabe@arb.ca.gov</u>

These comments will be compiled, reviewed, and posted to the LCFS website in a timely manner.

TABLE OF CONTENTS

Table of Contents	i
List of Figures	ii
List of Tables	ii
Summary	1
CA-GREET Model Pathway for LNG from Landfill Gas	2
Landfill Gas Collection and Transport	6
Landfill Gas Processing	6
Natural Gas Transport.	7
Natural Gas Liquefaction to LNG	7
LNG Transport and Distribution	7
LNG Tank to Wheel	8
APPENDIX A	9
SECTION 1. LANDFILL GAS COLLECTION	. 10
1.1 Energy Use for Natural Gas Recovery	. 10
1.2 GHG Emissions from Landfill Gas Collection and Transport to Processing	. 12
SECTION 2. LANDFILL GAS PROCESSING	. 14
2.1 Energy Use for Landfill Gas Processing	. 14
2.2 GHG Emissions from Landfill Gas Processing	. 15
SECTION 3. NATURAL GAS TRANSPORTATION AND DISTRIBUTION	. 17
3.1 Energy Use for NG Transport and Distribution	. 17
3.2 GHG Emissions from Natural Gas Transport to LNG Plants in California	. 17
SECTION 4. NATURAL GAS LIQUEFACTION TO LNG	. 18
4.1 LNG Liquefaction Energy Use	. 18
4.2 GHG Emissions from Natural Gas Liquefaction to LNG	. 19
SECTION 5. LNG TRANSPORT AND DISTRIBUTION	. 20
5.1 LNG Truck Transport Summary	. 20
5.2 GHG Emissions from Truck Transport of LNG	. 20
SECTION 6. GHG EMISSIONS FROM VEHICLE	. 22
6.1 LNG Composition	. 22
6.2 GHG Emissions from Vehicles	. 22
APPENDIX B	. 23
LIQUEFIED NATURAL GAS (LNG) FROM CALIFORNIA LANFFILL GAS	
PATHWAY INPUT VALUES	. 23

LIST OF FIGURES

Figure	1 Diagrata	Componente	of the Londfill	Coo to INC Dathur	2
rigure	I. Discrete	Components	or the Landill	Gas to LING Patriwa	<i>1y</i>

LIST OF TABLES

Table A. Summary of Energy Consumption and GHG Emissions per mmBtu of LNG
Produced from LFG
Table B. Total Energy Consumption by Fuel Type for Landfill Gas Collection and
Transport
Table C. Total GHG Emissions from Landfill Gas and Transport
Table D. Total Energy Consumption for the Landfill Gas Processing
Table E. Total GHG Emissions from Landfill Gas Processing
Table F. Energy Use for NG Transport to Liquefaction Plant
Table G. GHG Emissions from Natural Gas Transport to Liquefaction Plant
Table H. Energy Use for NG Liquefaction, Btu/mmBtu
Table I. Total GHG Emissions Associated with Natural Gas Liquefaction
Table J. Energy Use for LNG Transport and Distribution, Btu/mmBtu7
Table K. Total GHG Emissions Associated with LNG Transport and Distribution
Table L. Tank to Wheel GHG Emissions for LNG 8
Table 1.01. Calculation of Direct Energy Consumption (Btu/mmBtu) to LFG Collection
from Assumed Values for Efficiency and Fuel Shares
Table 1.02. Total Energy Consumption from Direct Energy Consumption for LFG
Recovery and Transport
Table 1.03. Emission Factors for California Marginal Stationary Electricity Use, g/mmBtu
Table 1.04. Calculation of Upstream CO_2 Emissions from Direct Energy Consumption
for LFG Recovery and Transport
Table 1.05. Values Used to Calculate Upstream CO ₂ Emissions for LFG Recovery 13
Table 1.06. Total GHG Emissions from Landfill Gas Recovery, g/mmBtu
Table 2.01. Calculation of Direct Energy Consumption for LFG Processing 14
Table 2.02. Total Energy Consumption from Direct Energy Consumption for LFG
Processing
Table 2.03. Values Used in Table 2.0215
Table 2.04. Direct LFG Emission Factors, g/mmBtu 16
Table 2.05. Total Direct and Upstream GHG Emissions for LFG Processing, g/mmBtu16
Table 3.01. Energy Use for NG Transport to LNG Plants
Table 3.02. Direct and Upstream Emissions for NG Transport to Refueling, g/mmBtu. 17
Table 4.01. Total Energy Use by Process Fuel for NA NG Liquefaction. 19
Table 4.02. Total Emissions (Direct + Upstream) Emissions for NA NG Liquefaction 19
Table 5.01. Direct, Upstream and Total Energy Use for Diesel Truck Delivering LNG
from LNG Plants to Stations20
Table 5.02. Total GHG for LNG Truck Transport from LNG Plants to Stations 20
Table 6.01. LNG Tailpipe Emissions. 22

SUMMARY

CA-GREET Model Pathway for LNG from Landfill Gas

Well-To-Tank (WTT) Life Cycle Analysis of a fuel pathway includes all steps from feedstock recovery to final finished fuel. Tank-To-Wheel (TTW) analysis includes actual combustion of fuel in a motor vehicle for motive power. Together, WTT and TTW analysis are combined to provide a total Well-To-Wheel (WTW) analysis.

A Life Cycle Analysis Model called the **Gr**eenhouse gases, **R**egulated **E**missions, and **E**nergy use in **T**ransportation (GREET)¹ developed by Argonne National Laboratory forms the core basis of the methodology used in this document. The model however, was modified by TIAX under contract to the California Energy Commission during the AB 1007 process². Using this model, staff developed a pathway document for compressed natural gas (CNG) which was made available in mid-2008 on the Low Carbon Fuel Standard (LCFS) website (<u>http://www.arb.ca.gov/fuels/lcfs/lcfs.htm</u>). Subsequent to this, the Argonne Model was updated in September 2008. To reflect the update and to incorporate other changes, staff contracted with Life Cycle Associates to update the CA-GREET model. This updated California modified GREET model (v1.8b) (released February 2009) was used to calculate WTW emissions for the specific case of LNG derived from landfill gas.

The landfill gas (LFG) to CNG pathway was published in February 2009. In this document, additional steps such as the liquefaction, transport, and use of Liquefied NG (LNG) are included. For completeness, necessary components have been transferred from the NA NG pathway document. This document therefore presents the energy use and greenhouse gas (GHG) emissions generated during the process of producing and using liquefied natural gas (LNG) from landfill gas in a heavy-duty vehicle.

The pathway includes landfill gas collection in California landfills via pipeline, then routed to LNG processing plants, and transporting LNG to refueling station and finally for use in a heavy duty vehicle. In instances where LNG plants are located at the landfill site, no additional transport via pipeline will be required. Figure 1 shows the discrete components that form the LNG from LFG pathway. Therefore, this document presents all assumptions, and step by step calculations of energy consumption and GHG emissions for this LNG pathway. Most of the components of this pathway have been transferred from the North American (NA) NG pathway. Users are directed to this document as only summaries for these steps are provided in this document.

Figure 1. Discrete Components of the Landfill Gas to LNG Pathway.

Several general descriptions and clarification of terminology used throughout this document are:

- CA-GREET employs a recursive methodology to calculate energy consumption and emissions. To calculate WTT energy and emissions, the values being calculated are often utilized in the calculation. For example, crude oil is used as a process fuel to recover crude oil. The total crude oil recovery energy consumption includes the direct crude oil consumption AND the energy associated with crude recovery (which is the value being calculated).
- Btu/mmBtu is the energy input necessary in Btu to produce or transport one million Btu of a finished (or intermediate) product. This description is used consistently in CA-GREET for all energy calculations. There are 1,055 MJ in one mmBtu of energy, so in order to convert one million Btu into MJ, divide the million Btu by 1055.
- gCO₂e/MJ provides the total greenhouse gas emissions on a CO₂ equivalent basis per unit of energy (MJ) for a given fuel. Methane (CH₄) and nitrous oxide (N₂O) are

converted to a CO₂ equivalent basis using IPCC global warming potential values and included in the total.

- CA-GREET assumes that VOC and CO are converted to CO₂ in the atmosphere and includes these pollutants in the total CO₂ value using ratios of the appropriate molecular weights.
- Process Efficiency for any step in CA-GREET is defined as:

Efficiency = energy output / (energy output + energy consumed)

Table A below provides a summary of the results for this LNG pathway. The WTW analysis for LNG results in **414,087** Btu of energy required to produce 1 (one) mmBtu of available fuel energy. From a GHG perspective, **26.05** gCO₂e/MJ of GHG emissions are generated during the production and use of LNG in a heavy duty vehicle.

Note that rounding of values has not been performed in several tables in this document. This is to allow stakeholders executing runs with the GREET model to compare actual output values from the CA-modified model with values in this document.

Table A.	Summary	of Energy	Consumption	and GHG	Emissions	per mmBtu	of LNG
Produce	d from LFG	ì	-				

	Energy Required (Btu/mmBtu)	GHG Emissions (gCO ₂ e/MJ)
Well-to-Tank		
LFG Collection and Pipeline Transport	9,962	0.49
LFG Processing	-867,520	-49.56
Cleaned LFG Transport via Pipeline	1,350	0.45
Liquefaction at LNG Plants	265,616	15.79
LNG Transport and Distribution	4,679	0.38
Total Well-to-Tank	-589,078	-32.45
Tank-to-Wheel		
Carbon in Fuel	1,000,000	56
Vehicle CH_4 and N_2O		2.5
Total Tank-to- Wheel	1,000,000	58.5
Total Well-to-Wheel	414,087	26.05

Note: percentages may not add to 100 due to rounding

For this pathway, it is assumed that all electricity is <u>marginal California electricity</u>, which is based on natural gas and renewable power. All of the values for LFG collection and processing are the same as provided in the LFG to CNG (published by ARB in February 2009) and the NA NG to LNG document published by ARB in June 2009.

From an energy viewpoint, energy is credit for collection of LFG of the WTW analysis. Similarly, from a GHG perspective, a large amount of GHG is credited for not using fossil fuel for this pathway.

The following sections provide summaries of each of the WTT components as well as the TTW values. Expanded details are provided in Appendix A. A table of all input values is provided in Appendix B.

Landfill Gas Collection and Transport

Tables B and C provide a summary of the energy consumption and associated GHG emissions from landfill gas collection. Calculation details are provided in Appendix A.

 Table B. Total Energy Consumption by Fuel Type for Landfill Gas Collection and

 Transport

Fuel Type	Btu/mmBtu
Electricity	9,262
Total	9,262

Table C. Total GHG Emissions from Landfill Gas and Transport

	GHG gCO₂e/MJ
Electricity	0.49
Total	0.49

Landfill Gas Processing

Tables D and E provide the energy consumption and associated GHG emissions from landfill gas cleanup and processing. Calculation details are provided in Appendix A.

Table D. Total Energy Consumption for the Landfill Gas Processing

Fuel Type	Btu/mmBtu
Landfill gas	144,833
Electricity	131,151
Avoided Flaring Credit	-1,143,504
Total Energy	-867,520

Table E. Total GHG Emissions from Landfill Gas Processing

	GHG
	gCO₂e/MJ
Landfill Gas	8.43
Electricity	6.88
Flaring Credit	-64.65
Total	-49.56

Natural Gas Transport

Tables F and G summarize energy consumption and GHG emissions from natural gas (cleaned LFG) transport to liquefaction plant in CA. Calculation details are provided in Appendix A.

Table F. Energy Use for NG Transport to Liquefaction Plant

Total T&D Energy Use = 1,350 Btu/mmBtu

Table G. GHG Emissions from Natural Gas Transport to Liquefaction Plant

	CO ₂	CH₄	N ₂ O	GHG gCO₂e/mmBtu	GHG gCO₂e/MJ
Total	31.7	17.49	0.001	1,028	0.45

Natural Gas Liquefaction to LNG

Tables H and I provide a summary of energy consumption and GHG emissions from natural gas liquefaction in California LNG plants. Calculation details are provided in Appendix A.

Table H. Energy Use for NG Liquefaction, Btu/mmBtu

Total Energy Use for Liquefaction is 265,616 Btu/mmBtu

Table I. Total GHG Emissions Associated with Natural Gas Liquefaction

	CO ₂	CH₄	N ₂ O	GHG gCO₂e/mmBtu	GHG gCO₂e/MJ
Total	15,571	33	0.387	16,517	15.79

LNG Transport and Distribution

LNG is transported and distributed by trucks to the refueling stations. Summaries of the energy use and corresponding GHG emissions from transport and distribution are provided in Tables J and K respectively.

Table J. Energy Use for LNG Transport and Distribution, Btu/mmBtu

Total Energy Use for LNG T&D is 4,679 Btu/mmBtu

Tabla K	Total	$\cap \square \cap$	Emioniana	Appropriated	with INC	Transport	Diatribution
i able n.	TOlai	GHG	LIIIISSIUIIS	ASSOCIALEU	with LING	παπορυπιαπα	DISTINUTION

	CO ₂	CH₄	N ₂ O	GHG gCO₂e/mmBtu	GHG gCO₂e/MJ
Total	378	0.879	0.009	403	0.38

LNG Tank to Wheel

This section provides a summary of TTW GHG emissions from combusting LNG in a Heavy Duty vehicle. This includes CO_2 , CH_4 and N_2O emissions generated during combustion. Details of calculations are provided in Appendix A.

Table L. Tank to Wheel GHG Emissions for LNG

APPENDIX A

SECTION 1. LANDFILL GAS COLLECTION

1.1 Energy Use for Natural Gas Recovery

The first step in the LFG pathway is landfill gas collection at the landfills. Currently, there are 218 landfills in California that are subjected to the proposed ARB's methane emissions reduction regulation¹. A collection and control system is required in the landfills that have 450,000 tons of water-in-place or greater. These systems consist most commonly of vertical wells and in some cases horizontal trenches that are buried within the waste and connected to header pipes which route the gas to a pump or blower station. Vacuum applied to the wells by a pump or blower draws the gas to a control device, such as a flare, internal combustion engine, boiler, gas turbine, or microturbine. The collected gas can either be combusted, used to produce energy, or purified for offsite use. Complete details are provided in the LFG to CNG pathway published in February 2009 (http://www.arb.ca.gov/fuels/lcfs/022709lcfs lfg.pdf).

In this document, the LFG is assumed to be collected via an electric blower and pipelined to a processing plant. Because the location of the plant is typically very close to the landfill, the energy consumed in this transport is very small. Based on the LFG to CNG pathway document published in February 2009, there are three key assumptions made to calculate direct energy consumption for landfill gas recovery:

- Direct Energy Required (4,621.25 Btu/mmBtu, TIAX Estimate²)
- Fuel Shares (split of total energy consumed by fuel type)
- Leak Rate (0%, TIAX Estimate³)

To recover the LFG, a hermetically sealed electric blower is utilized. The assumed energy required to recover 1 mmBtu of LFG is 4,621.25 Btu. Because the blower is hermetically sealed and the landfill cap is under negative pressure, it is assumed that no LFG leaks during the recovery process.

The figure of **4,621.25 Btu/mmBtu** is the direct energy consumption for the LFG recovery step (mainly electricity for the blower). This is not the total energy required however, since GREET accounts for the "upstream" energy associated with each of the fuels utilized. The total energy associated with the electricity includes the energy used to produce the electricity and the energy used to recover and deliver the fuels to the power plants.

¹ Regulation to reduce methane emissions from municipal solid waste (MSW) landfills - ISOR by

California ARB May 2009 ² Based on data provided by Prometheus-Energy for the Bowerman landfill in Orange County, California. 37.5 hp are required to recover 770 scfm LFG with an LHV of 446 Btu/scf. ³ Standard program for the sector

Standard practice for many years is to use hermetically sealed blowers to transfer landfill and digester gases. Verbal information from Bruce at Spencer Turbine Company (1-800-232-4321) 7/08.

Once the LFG has been recovered, it is transferred a short distance by pipeline to the processing plant. For this pathway, it has been assumed that the processing plant is 1 mile from the landfill. For landfill gas transport, hermetically sealed blowers are utilized, so the leak rate is assumed to be zero. The pipeline energy consumption is the energy associated with moving the landfill gas through the pipeline. The main assumptions are:

- Fuel Shares (100% electricity)
- Energy Intensity (203 Btu/ton-mile, calculated from CA-GREET defaults and LFG density)
- Distance (1 mile)
- Lower Heating Value (446 Btu/scf⁴)
- Density (34.54 g/scf)

The transport pipeline direct energy consumption is calculated as follows:

Pipeline Energy (Btu/mmBtu) = $\frac{34.54g / scf}{446Btu / scf} \times 1mile \times 203Btu / ton - mile \times \frac{1lb}{454g} \times \frac{1ton}{2,000lbs} \times 10^{6} Btu / mmBtu$ = **17.31** Btu/mmBtu

The total direct energy consumption for LFG recovery and transport of one mile to processing is (4,621.25 + 17.31) = 4,638.56 Btu/mmBtu. The relationship between figure and the combined recovery and transport efficiency is shown in Table 1.01.

Table 1.01. Calculation of Direct Energy Consumption (Btu/mmBtu) to LFG Collection from Assumed Values for Efficiency and Fuel Shares

Process Fuel Type	Fuel Shares	Relationship of Recovery Efficiency (0.972) and Fuel Shares	Direct Energy Consumption, Btu/mmBtu
Electricity	100%	(10 ⁶)(1/0.9954 - 1)(100%)	4,638.56
Total Direct Energy Consumption for NG recovery			4,638.56

The feed loss (leak) share of 11.4% is back calculated from an assumed leak fraction of 0.35% (0.0035 g methane leaks per g natural gas). This is converted to g/mmBtu using the natural gas density and heating value as shown below:

⁴ LHV and density calculated from average fuel properties at Bowerman Landfill, provided by Prometheus-Energy

$$\left[(72.166g / mmBtu) \times \frac{930Btu / ft^3}{20.4g / ft^3 \times 10^6} \right] \div (\frac{1}{97.2\%} - 1) = 11.4\%$$

Where:

72.166 g/mmBtu CH₄ leakage = 0.35% x (20.4 g/ft³/930 Btu/ft³) x $10^6 - 4.6$ g/mmBtu of CH₄ from combustion (calculated in table 1.02 below) 930 Btu/ft³: LHV of NG 20.4 g/ft³: density of NG

Table 1.02. Total Energy Consumption from Direct Energy Consumption for LFGRecovery and Transport

Total energy for LFG recovery	9,262
-------------------------------	-------

1.2 GHG Emissions from Landfill Gas Collection and Transport to Processing

The emission calculation methodology is analogous to the energy calculations. First the direct emissions are calculated and then the upstream emissions (due to recovery and processing of each direct fuel used) are added. To calculate the direct emissions, direct energy by fuel type (provided in detail above) is multiplied by the technology share (% fired in turbine, boiler, engine etc) and then multiplied by the appropriate emission factor. Emissions of CO_2 , N_2O and methane due to combustion are quantified. In addition, emissions of VOC and CO are quantified and assumed to convert to CO_2 in the atmosphere. The conversions are calculated as follows:

CO (g/mmBtu) * 44 gCO₂/gmole / 28 gCO/gmole

VOC (g/mmBtu) * 44 gCO₂/gmole / 12 gC/gmole * 0.85 gC/ gVOC

For LFG recovery and transport, only electric blowers are utilized. Therefore, there are no direct emissions, only upstream emissions from electricity production. The emissions are calculated as follows:

Emissions = Miles * Energy Intensity * Fuel Density / Lower Heating Value * Upstream Emission Factor

Table 1.03 provides all of the emission factors for electricity production utilized to calculate LFG recovery and transport GHG emissions.

	VOC	CO	CH₄	N ₂ O	CO ₂
Feedstock	10.201	18.484	212.375	0.105	8,281
Electricity Generation	5.67	39.677	7.043	2.48	96,250
Total	15.87	58.16	219.42	2.585	104,531

Table 1.03. Emission Factors for California Marginal Stationary Electricity Use, g/mmBtu

The upstream emissions are those associated with electricity production and electricity feedstock recovery and transport. This pathway utilizes marginal electricity (natural gas and renewables).

Table 1.04 provides the upstream CO_2 emissions for landfill gas recovery and transport. Table 1.05 details the values used in Table 1.04. The total emissions are presented in Table 1.06 along with the other GHGs; the CO and VOC values are converted to CO_2 .

Table 1.04. Calculation of Upstream CO₂ Emissions from Direct Energy Consumption for LFG Recovery and Transport

Fuel Type	Formula	g/mmBtu
Electricity	A (B + C)/ 10 ⁶	485

Table 1.05. Values Used to Calculate Upstream CO₂ Emissions for LFG Recovery

Fuel Type	Description
А	4,638.56 Btu of direct electricity used to recover 1 mmBtu LFG.
В	8,281 g/mmBtu CO ₂ to produce & transport feedstock.
С	96,250 gCO ₂ to produce 1 mmBtu electricity.

Table 1.06. Total GHG Emissions from Landfill Gas Recovery, g/mmBtu

	voc	со	CH₄	N₂O	CO2	CO ₂ *	Total GHG gCO₂e/ mmBtu	Total GHG gCO₂e/ MJ
Electricity	0.074	0.270	1.018	0.012	484.8	485.5	514.5	0.488
Total	0.074	0.270	1.018	0.012	484.8	485.5	514.5	0.49

* Includes contributions from VOC and CO.

SECTION 2. LANDFILL GAS PROCESSING

2.1 Energy Use for Landfill Gas Processing

The next step in the LFG to CNG pathway is cleaning the LFG to pipeline quality and compressing it to natural gas distribution pipeline pressures. The LFG processing data are based on an LFG to pipeline facility in Canada⁵. The facility draws 2,570 mmBtu/day of LFG from the landfill (~3,500 scfm) and requires 1.8 MW of grid electricity to run the compressors before the membrane to clean the gas. Currently, the facility uses UOP membranes which can achieve 84% methane removal, but the new standard is the Air Liquide MEDAL membrane that can achieve 90% removal efficiency. The Air Liquide MEDAL membrane's 90% removal efficiency³ is used in this calculation. The remaining 10% is combusted in a thermal oxidizer to minimize emissions. The thermal oxidizer uses pre-membrane LFG as the fuel at a rate of 3 mmBtu/hr (72 mmBtu/day).

With 2,570 mmBtu/day drawn from the landfill, and 72 mmBtu/day being used as fuel in the thermal oxidizer, 2,498 mmBtu/day is fed to the membrane where 90% (2,248 MMBtu/day) is sent to the pipeline. The remaining 10% (250 mmBtu/day) is sent to the thermal oxidizer, 1.8 MW (147.41 mmBtu/day) is used as the process energy. Therefore, the overall efficiency of the LFG gas cleaning process is 2,248/(2570+147.41) = 82.7%. The breakdown of the process energy used is 322 mmBtu/day total in the thermal oxidizer and 147.41 mmBtu/day from electricity, which is 68.6% and 31.4% respectively

The methodology to calculate direct and total energy for landfill gas processing is the same as that to calculate direct and total energy for LFG recovery. Table 2.01 provides details of direct energy consumption to process landfill gas. Note that this pathway includes a credit for the energy associated with all of the LFG that would have otherwise been flared.

Process Fuel Type	Fuel Shares	Relationship of Process Efficiency (0.827) and Fuel Shares	Direct Energy Consumption, Btu/mmBtu
Landfill Gas	68.6%	(10 ⁶)(1/0.827 - 1)(0.686)	143,504
Electricity	31.4%	(10 ⁶)(1/0.827 - 1)(0.314)	65,686
Flaring Credit		- (1,000,000 + 143,504)	- 1,143,504
Direct Energy Consumption for LFG Processing			- 934,314

The values provided in Table 2.01 are direct energy consumption per Btu for the LFG processing step. This is not the total energy required however, since GREET accounts

⁵ Emails and conversations between Renewable Solutions Group LLC, Pittsburgh, PA and TIAX LLC.

for the "upstream" energy associated with each of the fuels utilized to process the LFG. Table 2.02 demonstrates how the direct energy consumption values shown in Table 2.01 and values in Table 2.03 are utilized to calculate total energy required.

Table 2.02. Total Energy Consumption from Direct Energy Consumption for LFG Processing

Fuel Type	Formula	Btu/mmBtu
Landfill Gas	A(1 + B/10 ⁶)* L1	144,833.1
Electricity	C (D + E)/ 10 ⁶	131,151.2
Flaring Credit	G	-1,143,504
Total Energy (- 867,520	

Table 2.03. Values Used in Table 2.02

Fuel Type	Description
A	143,504 Btu of direct LFG fuel used per mmBtu LFG processed.
В	Total energy to recover LFG is 9,262 Btu/mmBtu.
С	65,686 Btu of direct electricity used to process 1 mmBtu LFG.
D	111,649 Btu of energy used to recover and transport sufficient feedstock to generate 1 mmBtu electricity.
E	1,884,989 Btu used to produce 1 mmBtu electricity.
L1	Loss factor for LFG transport to processing, 1.000 calculated based on assumption of no leakage.

2.2 GHG Emissions from Landfill Gas Processing

As mentioned above, the only fuel directly combusted is LFG in a thermal oxidizer. A large industrial boiler has been used as a surrogate for the thermal oxidizer in GREET when calculating emissions. The exception is the CO_2 emission factor – LFG fuel properties were utilized for this emission factor. Because the LFG would otherwise have been flared, a credit is applied for the flare emissions. The emission factors are provided in Table 2.04. Note that LFG contains approximately 42% CO_2 . Two emission factors are shown: the total CO_2 emitted and the CO_2 emitted due to the LFG methane. The emission factor utilized in the calculations is the one that only considers the methane content, since the CO_2 would have been emitted regardless.

	Large Boiler	Flare
VOC	1.1557	2.5
CO	16.419	26.
CH ₄	1.100	49.
N ₂ O	0.315	1.1
CO ₂ (all LFG Carbon)	107,690	107,523
CO ₂ (only LFG Methane)	58,198	58,048

 Table 2.04. Direct LFG Emission Factors, g/mmBtu

These emission factors are combined with direct energy consumption to yield direct emissions,. Similar to total energy, the total emissions include direct emissions plus the emissions associated with recovery and processing/refining the fuels used to process landfill gas. Table 2.05 provides the total emissions associated with LFG processing.

	voc	со	CH₄	N ₂ O	CO ₂	CO ₂ *	Total GHG gCO₂e/ mmBtu	Total GHG gCO ₂ e/ MJ
Landfill Gas	0.154	3.483	16.257	0.217	8,418	8,424	8,896	8.431
Electricity	1.042	3.820	4.033	0.170	6,866	6,875	7,027	6.878
Flare Credit	-2.859	-29.731	-56.032	-1.258	-66,378	-66,434	-68,209	-64.650
Total	-1.662	-22.43	-35.74	-0.87	-51,093	-51,134	-52,287	-49.56

Table 2.05. Total Direct and Upstream GHG Emissions for LFG Processing, g/mmBtu

* Includes contribution from VOC and CO.

SECTION 3. NATURAL GAS TRANSPORTATION AND DISTRIBUTION

3.1 Energy Use for NG Transport and Distribution

The third step in the LNG from LFG pathway is transport and distribution of the cleaned natural gas by pipeline (assumed 50 miles distance) from the processing plant to the LNG plants. Detail calculation of the value is shown in the LFG to CNG pathway document published in February 2009. It consists of:

- T&D Feedstock Loss
- T&D Pipeline Transport Energy Consumption

Table 3.01 presents the total T&D energy is the sum of the feedstock loss (800 Btu/mmBtu) and pipeline energy consumption (550 Btu/mmBtu).

TILLOAA		(NO	T	
Table 3.01.	Energy Use	e for NG	i ransport i	to LING Plants

Total T&D Energy Use = 800 + 550 = 1,350 Btu/mmBtu

3.2 GHG Emissions from Natural Gas Transport to LNG Plants in California

The pipeline transport emissions are composed of methane leaks and emissions associated with transporting the natural gas through the pipeline. Similar to the discussion in the LFG to CNG document, GHG emissions consist of electricity and natural gas use in the pipeline and methane leakage⁶.

	voc	со	CH₄	N₂O	CO2	CO ₂ *	Total GHG gCO₂e/ mmBtu	Total GHG gCO ₂ e/ MJ
Natural Gas	0.044	0.101	0.131	0.001	28.635	28.931	32.501	0.0308
Electricity	0.000	0.002	0.006	0.000	3.069	3.073	3.257	0.0031
Leakage	0.000	0.000	17.548	0.000	0.000	0.000	438.71	0.4158
Total	0.04	0.10	17.69	0.001	31.70	32.00	474.47	0.45

Table 3.02. Direct and Upstream Emissions for NG Transport to Refueling, g/mmBtu

* Includes contribution from VOC and CO

⁶ See LFG to CNG pathway document published in February 2009 by ARB http://www.arb.ca.gov/fuels/lcfs/022709lcfs_lfg.pdf

SECTION 4. NATURAL GAS LIQUEFACTION TO LNG

4.1 LNG Liquefaction Energy Use

For this document, small scale systems (about 5,000 tonne/year) have been considered based on the systems likely to be used in California. Small scale LNG facilities operate with typical efficiencies between 76 and 92% using a simple cascade cycle (Kunert 2008⁷). Liquefaction energy inputs were calculated for small scale liquefiers based on electric power consumption of 0.6 kWh/kg of LNG (Jakobsen 2008⁸; Kunert 2008⁷). This analysis assumes 80% liquefaction efficiency, due to the smaller scale of liquefiers likely in California. Complete details for liquefaction are provided in the pathway document for LNG from NA NG and RNG sources

North American NG is liquefied at a central facility and distributed by heavy duty LNG trucks. NG liquefaction in California is done by pressure let down or electromagnetic liquefaction and is all electric. Liquefaction in California is assumed to be 100% natural gas-based, with an 80% average efficiency. This efficiency is somewhat lower than the efficiency assumed for larger scale remote liquefaction and is consistent with current industry liquefaction curves^{7,8}. The main parameters for NA liquefaction modeling are:

- Region: CA Marginal (CA petroleum and CA marginal electricity)
- NG efficiency (80%)
- Process fuel shares (100% NG)
- LNG storage leakage rate (0.05% day, IPCC value)
- LNG storage duration (5 days, CA-GREET default)
- Recovery rate of LNG boil-off (100%)

The liquefaction efficiency for North American NG means that 250,000 Btu of direct NG is required to liquefy 1 mmBtu of NG fuel. A natural gas turbine is used for liquefaction energy. Unlike NG extraction and processing, GREET models feed loss (Btu/mmBtu) based directly on the methane boil-off rather than using a fuel share for feed loss. However, zero percent feed loss is assumed because typically LNG facilities recapture boil off and re-liquefy the NG or use it as fuel.

Total energy for liquefaction is based on the direct energy input plus the upstream energy for that fuel and is calculated in the same way as total energy for extraction and processing. Total energy is shown in Table 4.01. The total energy is based on a California marginal electricity mix.

⁷ Kunert (2008). "Small is Beautiful - MiniLNG Concept: A Very Small LNG Production Plant for the Potential Use of Bio-Energy for Future Energy Supply". "The Potential of Bioenergy for Future Energy Supply" Conference, Leipzig, Germany

⁸ Jakobsen, A. (2008). "Energy Efficient LNG Technology for Recovery of Flare Gas". Presentation at the "Global Forum on Flaring and Venting Reduction and Natural Gas Utilisation".

Fuel	Direct Energy	Upstream Energy	Total Energy		
	10 ⁶ *(1/80%)*100%	6 250,000*(31,144 +			
Natural Gas	= 250,000	31,321)/10 ^{^6} =	265,616		
		15,616			
Total (Btu/mmBtu)			265,616		

Table 4.01. Total Energy Use by Process Fuel for NA NG Liquefaction.

4.2 GHG Emissions from Natural Gas Liquefaction to LNG

Complete details for GHG emissions from liquefaction are provided in the LNG from NA NG and RNG sources document.

Table 4.02. Total Emissions (Direct + Upstream) Emissions for NA NG Liquefaction.

Natural Gas	CO ₂	CH₄	N ₂ O	GHG	GHG
Natural Gas	g/mmBtu				g/MJ
Total	15,717	32.906	0.389	16,655	15.79

Note: See detailed calculation in the LNG from NA NG published by ARB

SECTION 5. LNG TRANSPORT AND DISTRIBUTION

5.1 LNG Truck Transport Summary

Complete details for energy from liquefaction are provided in the LNG from NA NG and RNG sources document.

Energy Intensity for Trip to Destination and Return Trip:

(128,450 Btu/gal)/(5 mi/gal)/15 tons = 1,713 Btu/ton-mi **Direct Diesel Energy**

 $\left[\frac{10^6 \times 1,724g / gal}{80,968Btu / gal \times 454g / lb \times 2,000lbs / ton}\right] \times 50miles \times 1713 \times 2\frac{Btu}{ton - mile} = 4,016 \text{ Btu/mmBtu}$

Upstream Diesel Energy

 $\left[\frac{10^6 \times 1,724g / gal}{80,968Btu / gal \times 454g / lb \times 2,000lbs / ton}\right] \times 50miles \times 1713 \times 2\frac{Btu}{ton - mile} \times 0.165Btu / Btu = 663$

Btu/mmBtu

(where 0.165 Btu/Btu is Btu energy of diesel consumption per Btu of Btu diesel transported - upstream)

Table 5.01. Direct, Upstream and Total Energy Use for Diesel Truck Delivering LNG from LNG Plants to Stations

Direct Energy	Upstream Energy	Total Energy
4,016	663	4,679

5.2 GHG Emissions from Truck Transport of LNG

Complete details for GHG emissions from liquefaction are provided in the LNG from NA NG and RNG sources document. and are shown in Table 5.02 below.

Table 5.02. Total GHG for LNG Truck Transport from LNG Plants to Stations

Fuels	CO ₂	CH ₄	N ₂ O	GHG	GHG
rueis		g/MJ			
Diesel	378	0.453	0.009	392	0.372
Methane Losses		0.426		11	0.01
Total	378	0.879	0.009	403	0.38

Example of calculation CO₂ shown above:

Upstream Diesel CO₂:

 $\left[\frac{1,724g/gal}{80,968Btu/gal \times 454g/lb \times 2,000lbs/ton}\right] \times 50miles \times 15,813g/mmBtu \times 1,713 \times 2\frac{Btu}{ton-mile} = 64 \text{ schemePtive}$

64 g/mmBtu

where 15,813 g/mmBtu is the upstream CO_2 emissions associated with diesel production (calculated in the *Petroleum* sheet of the CA-GREET model)

Direct Diesel CO₂

 $\left[\frac{1,724g/gal}{80,968Btu/gal \times 454g/lb \times 2,000lbs/ton}\right] \times 50miles \times (77,809+77,912)g/mmBtu \times 1,713\frac{Btu}{ton-mile}$ = **313 q/mmBtu CO**₂

Total: 378 g/mmBtu CO2

where 77,809 g/mmBtu and 77,912 g/mmBtu are the emission factors from the *EF* sheet of the CA-GREET.

SECTION 6. GHG EMISSIONS FROM VEHICLE

6.1 LNG Composition

LNG composition affects the inputs to its life cycle analysis in two ways. First, the composition determines the product fuel's carbon content which can range from 74.7 to 76.1% with corresponding to 55.4 to about 56.8 g/MJ (as CO2) when calculated from the individual LNG composition. The range in carbon content for LNG is relatively small as it contains low levels of nitrogen and no CO₂. A carbon content of 75.7% was selected as the CA-GREET input based on the average of a range of LNG compositions. The CA-GREET inputs for heating value and density were also changed to reflect LNG compositional data that was consistent with data and the carbon content in g/MJ.

6.2 GHG Emissions from Vehicles

Vehicle GHG emissions consist of:

- Tailpipe CO₂ (combusted CH₄)
- Tailpipe N₂O (combustion product)
- Tailpipe CH₄ (product of incomplete combustion, evaporative losses)

In this analysis, heavy duty trucks use LNG. The CO_2 is calculated from the carbon content of the fuel, minus the tailpipe methane emissions. CO_2 emissions therefore depend on the fuel heating value (LHV), density (g/gal) and carbon content (% C by weight), and differ for NA NG and remote NG. Methane and nitrous oxide emissions are calculated based on the g/mi emission factors from the California Climate Action Registry.

 $(1,724 \text{ g-LNG/gal})^{*}(0.757 \text{ g-C/g-NG})^{*}(1/80,968 \text{ Btu/gal})^{*}(44 \text{ g-CO}_{2}/12 \text{ g-C})^{*}(\text{Btu/1.055 kJ})^{*}(1,000 \text{ kJ/MJ}) =$ **56.0** g CO₂/MJ

In the above equations 1,724 is the density of NG (CA-GREET default), 0.757 is the Carbon in NG (Ca-GREET default) and the LHV of NG is 80,968 Btu/gal.

The same vehicle CH_4 and N_2O emissions are assumed for LNG vehicles as CNG vehicles⁸, (See CNG from NA NG document).

Tailpipe Emissions	CO ₂	CH₄ and N₂O	Total
gCO ₂ e/MJ	56.0	2.5	58.5

Table 6.01. LNG Tailpipe Emissions.

⁸ See CNG pathway document published in by ARB in Feb 2009

APPENDIX B

LIQUEFIED NATURAL GAS (LNG) FROM CALIFORNIA LANFFILL GAS PATHWAY INPUT VALUES

Parameters	Units	Values	Note			
GHG Equivalent						
CO ₂		. 1	CA-GREET Default			
CH₄		25	CA-GREET Default			
N ₂ O		298	CA-GREET Default			
VOC		3.1	CA-GREET Default			
CO		1.6	CA-GREET Default			
	Natura	Gas Recover	ry			
Process Efficiency		97.2%	CA-GREET Default			
Natural Gas Leak Rate		0.35%	CA-GREET Default			
Fuel Shares						
Residual Oil		0.9%	CA-GREET Default			
Conventional Diesel		9.8%	CA-GREET Default			
Conventional Gasoline		0.9%	CA-GREET Default			
Natural Gas		76.2%	CA-GREET Default			
Electricity		0.9%	CA-GREET Default			
Feed Loss (Leak)		11.4%	CA-GREET Default			
Equipment Shares						
Small Boiler - Residual Oil		100%	CA-GREET Default			
CO ₂ Emission Factor	gCO ₂ /mmBtu	85,049	CA-GREET Default			
Commercial Boiler - Diesel		25%	CA-GREET Default			
CO ₂ Emission Factor	gCO ₂ /mmBtu	78,167	CA-GREET Default			
Stationary Reciprocating Eng		500/				
Diesei	~~~ /~~ Dtu	50%				
	gcO ₂ /пппыи	77,349				
CO Emission Easter	aco /mmBtu	25%				
Stationary Reciprocating Eng	gCO ₂ /mmblu	76,179				
Gasoline						
CO ₂ Emission Factor	gCO ₂ /mmBtu	50,480	CA-GREET Default			
Small Boiler - NG		50%	CA-GREET Default			
CO ₂ Emission Factor	gCO ₂ /mmBtu	58,215	CA-GREET Default			
Stationary Reciprocating Eng NG		50%	CA-GREET Default			
CO₂ Emission Factor	gCO ₂ /mmBtu	56,388	CA-GREET Default			
	Natural	Gas Processi	ng			
Process Efficiency		97.2%	CA-GREET Default			
Natural Gas Leak Rat	е	0.15%	CA-GREET Default			
Fuel Share	s					
Conventional Dies	el	0.9%	CA-GREET Default			
Natural Ga	IS	91.1%	CA-GREET Default			
Electrici	ty	2.8%	CA-GREET Default			
Feed Loss (Lea	()	5.1%	CA-GREET Default			
Equipment Share	S					
Commercial Boiler - Dies	əl	33%	CA-GREET Default			
CO ₂ Emission Factor	or gCO ₂ /mmBtu	78,167	CA-GREET Default			
Stationary Reciprocating Eng Dies	el	33%	CA-GREET Default			
CO ₂ Emission Factor	or gCO ₂ /mmBtu	77,349	CA-GREET Default			
Turbine - Dies	el	34%	CA-GREET Default			
CO ₂ Emission Fact	or gCO ₂ /mmBtu	78,179	CA-GREET Default			
Large Boiler - N	G	50%	CA-GREET Default			
CO₂ Emission Facto	or gCO ₂ /mmBtu	58,215	CA-GREET Default			

Parameters	Units	Values	Note
Large Turbine - NG		50%	CA-GREET Default
CO ₂ Emission Factor	gCO ₂ /mmBtu	58,196	CA-GREET Default
Feed Loss		1.001	CA-GREET Default
	NG L	iquefaction	
NG Liquefaction Efficiency in CA		80%	CA-GREET Default
Process Fuels Shares			
Natural Gas		98%	CA-GREET Default
Electricity		2%	CA-GREET Default
Remote NG Processing Efficiency		80%	Excluding gas processing
Process Fuels Shares			Assumed the same as NA NG
	Natural Gas P	ipeline Transmi	ssion
Natural Gas Use		94%	CA-GREET Default
Electricity Use		6%	CA-GREET Default
Distance travel	Miles	1,400	For NA NG to California
	LNG Tr	uck Transport	
Tanker Truck Size	ton	15	fueled by diesel or LNG
Distance travel	Miles	50	from LNG plants in CA to CA filling stations
		250	from LNG plants in Baja to CA filling stations
Fuel Economy	Mi/gal	5	
Fugitive Emissions During Storage	%/day	0.1%/day	CA-GREET default
Fugitive Emissions Recovery Rate		80%	Industry Practice
Vehicle Emissions			
Carbon in NG	grams C/gram NG	72.4	
Fuels Properties	LHV (Btu/gal)	Density (g/gal)	
Crude	129,670	3,205	CA-GREET Default
Residual Oil	140,353	3,752	CA-GREET Default
Conventional Diesel	128,450	3,167	CA-GREET Default
Conventional Gasoline	116,090	2,819	CA-GREET Default
CaRFG	111,289	2,828	CA-GREET Default
CARBOB	113,300	2,767	CA-GREET Default
Natural Gas	83,686	2,651	NG Liquids
Natural Gas			NG gaseous: 930 Btu/scf