

Detailed California-Modified GREET Pathway for Conversion of Midwest Soybeans to Biodiesel (Fatty Acid Methyl Esters-FAME)

Stationary Source Division Release Date: December 14, 2009 Version: 3.0

The Staff of the Air Resources Boards developed this preliminary draft version as part of the Low Carbon Fuel Standard regulatory process.

The ARB acknowledges contributions from Life Cycle Associates (under contract with the California Energy Commission) during the development of this document

When reviewing this document, please submit comments directly to: Anil Prabhu: <u>aprabhu@arb.ca.gov</u> Chan Pham: <u>cpham@arb.ca.gov</u> Alan Glabe: <u>aglabe@arb.ca.gov</u> Jim Duffy : <u>jduffy@arb.ca.gov</u>

These comments will be compiled, reviewed, and posted to the LCFS website in a timely manner

TABLE OF CONTENT	i
LIST OF FIGURES	ii
LIST OF TABLES	ii
SUMMARY	1
WTT Details	8
TTW Details	.13
APPENDIX A	.14
SECTION 1. DETAILED ENERGY CONSUMPTION AND GHG EMISSIONS	
CALCULATIONS OF SOYBEAN FARMING	15
1.1 Soybean Farming Energy Consumption	15
1.2 GHG Emissions from Soybean Farming	19
 1.3 Energy Calculation from Production of Chemical Inputs in Soybean Farming. 	25
1.4 GHG Emissions Calculation from Production and Application of Chemical	
Inputs in Soybean Farming	27
1.5 Soil N ₂ O Release Due to Fertilizer Use	28
SECTION 2. SOYBEAN TRANSPORT	29
2.1 Energy Calculations for Soybean Transport	29
2.2 GHG Calculations for Soybean Transport	30
SECTION 3. SOYOIL EXTRACTION	33
3.1 Energy Calculations for Soyoil Extraction	33
3.2 GHG Calculations for Soyoil Extraction	34
SECTION 4. SOYOIL TRANSPORT	38
4.1 Energy Calculations for Soyoil Transport	.38
4.2 GHG Calculations for Soyoil Transport	39
SECTION 5. BIODIESEL PRODUCTION	41
5.1 Energy Calculations for Biodiesel Production	41
5.2 GHG Calculations from Biodiesel Production	.43
SECTION 6. BIODIESEL TRANSPORT AND DISTRIBUTION	.46
6.1 Energy Calculations for Biodiesel Transport to Retail Stations	.46
6.2 GHG Calculations for Biodiesel Transport to Retail Stations	47
SECTION 7. GHG EMISSIONS FROM A BIODIESEL-FUELED VEHICLE	50
7.1 Combustion Emissions from Fuel.	50
	52
MIDWEST SOYBEAN FOR BIODIESEL	52
Scenario: Soybean from Midwest transported to California for Biodiesel Productio	5n
Pathway - Input Values	53
	58
CO-PRODUCT METHODOLOGY	58
Co-Product Allocation Methods	59
Biodiesei Energy Allocation	60

TABLE OF CONTENT

LIST OF FIGURES

Figure 1. Discrete Components of the Midwest Soybean to Biodiesel Pathway
Figure 2. Percent Energy Contribution and GHG Emissions Contributions from a Well-
to-Wheel (WTW) Analysis of the Soybean to Biodiesel Pathway7
Figure C-1. Transesterification of plant oil to biodiesel61

LIST OF TABLES

Table A. Summary of Energy Consumption and GHG Emissions from a WTW Analysis
of Biodiesel Produced from Midwest Soybeans
Table B. Total Energy Use for Soybean Farming 8
Table C. Total GHG Emissions from Soybean Farming. 8
Table D. Total Energy Consumed for Chemical Inputs in Soybean Farming 9
Table E. Total GHG Emissions for Chemical Inputs in Soybean Farming
Table F. Total GHG Emissions from N ₂ O Release Due to Fertilizer Application
Table G. Total Energy Required for Soybean Transport 10
Table H. Total GHG Emissions from Soybean Transport
Table I. Total Energy Use for Soyoil Extraction 11
Table J. Total GHG Emissions from Soyoil Extraction 11
Table K. Total Energy Required for Soyoil Transport
Table L. Total GHG Emissions from Soyoil Transportation 11
Table M. Total Energy Use for Biodiesel Transesterification 12
Table N. Total GHG Emissions from Biodiesel Transesterification 12
Table O. Total Energy Use for Biodiesel Transport and Distribution 13
Table P. Total GHG Emissions from Biodiesel Transport and Distribution
Table Q. Total GHG Emissions from Using Biodiesel in a Heavy Duty Vehicle 13
Table 1.01 Direct Energy Consumption for Soybean Farming 15
Table 1.02 U.S. Average Electricity Mix Used for Feedstock Production 15
Table 1.03 Biodiesel Pathway Parameters
Table 1.04 Energy Consumption in the WTT Process and Specific Energy of Fuels
Used in the Soybean to Biodiesel Pathway17
Table 1.05 Soybean Farming Total Adjusted Energy Consumption from Direct Energy
Consumption
Table 1.06 Emission Factors for Fuel Combustion
Table 1.07 Direct Emissions from Soybean Farming 20
Table 1.08 CO2 Emission Factors for Fuels Used in Soybean Farming 21
Table 1.09 Calculation of Upstream CO_2 Emissions from Direct Farming Energy
Consumption
Table 1.10 Summary of Upstream Emissions From Soybean Farming
Table 1.11 Summary of Total (Direct + Upstream) Emissions from Soybean Farming 24
Table 1.12 Summary of Total (Direct + Upstream) Emissions from Soybean Farming
with Allocation and Loss Factors Applied25
Table 1.13 Energy Associated with Fertilizer/Herbicide/Pesticide Use 26
Table 1.14 GHG Emissions Associated with Fertilizer/Herbicide/Pesticide Use
Table 1.15 CA-GREET Inputs and Calculated Emissions for Soil N ₂ O Associated with
Soybean Cultivation
Table 2.01 Transport Parameters and Energy Use Details for Soybean Transport 29

Table 2.02	Transport Parameters and GHG Emissions from Soybean Transport	31
Table 2.03	Upstream Energy Consumption and Emissions from Diesel Production	32
Table 3.01	Direct Energy Consumption for Soyoil Extraction from Soybeans	33
Table 3.02	Total Energy Use from Direct Energy Use for Soyoil Extraction	34
Table 3.03	Direct Emissions from Soyoil Extraction	35
Table 3.04	Upstream CO ₂ Emissions from Direct Energy Use for Soyoil Extraction	36
Table 3.05	Upstream Emissions from Soyoil Extraction	36
Table 3.06	Total GHG Emissions from Soyoil Extraction	37
Table 4.01	Parameters and Energy Use for Soyoil Transport	38
Table 4.02	Soybean Oil Transport Parameters and Calculations	39
Table 5.01	Direct Energy Consumption for Soyoil Transesterification	41
Table 5.02	Total Energy Use from Direct Energy Use for Biodiesel Production	42
Table 5.03	Direct Emissions from Biodiesel Production	43
Table 5.04	Upstream CO ₂ Emissions from Direct Energy Use for Biodiesel Production	44
Table 5.05	Upstream Emissions from Biodiesel Production	44
Table 5.06	Total GHG Emissions from Biodiesel Production	45
Table 6.01	Transport Parameters and Energy Use for Biodiesel Transport and	
Distribution		46
Table 6.02	GHG Emissions from Biodiesel Transport and Distribution	48
Table 7.01	GHG Emissions from Fossil Carbon in Biodiesel	50
Table 7.02	Vehicle CH ₄ and N ₂ O Emissions	51
Table C-1.	Biodiesel Co-Products	59
Table C-2 .	Distribution of Fatty Acids in Soybean Oil Triglycerides	61

SUMMARY

Detailed California-Modified GREET Pathway for Conversion of Midwest Soybeans to Biodiesel (Fatty Acid Methyl Esters-FAME)

A Well-to-Tank (WTT) Life Cycle Analysis of soybean biodiesel (BD) pathway includes all steps from soybean farming to final finished 100% biodiesel (B100). Tank-to-Wheel (TTW) analysis includes actual combustion of fuel in a motor vehicle for motive power. Together, WTT and TTW analyses are combined to provide a total Well-to-Wheel (WTW) analysis.

A Life Cycle Analysis Model called the **G**reenhouse gases, **R**egulated **E**missions, and **E**nergy use in **T**ransportation (GREET)¹ developed by Argonne National Laboratory has been used to calculate the energy use and greenhouse gas (GHG) emissions generated during the entire process starting from farming soybeans to producing biodiesel and combusting biodiesel in an internal combustion engine. Staff, with assistance from Life Cycle Associates, modified the original GREET model to create a California specific model termed the CA-GREET model. Changes were restricted mostly to input factors (emission factors, generation mix, transportation distances, etc.) with no substantial changes in methodology inherent in the original GREET model. This California modified GREET model (v1.8a, release December 2009) forms the basis of this document. It has been used to calculate the energy use and Greenhouse Gas (GHG) emissions associated with a WTW analysis for Biodiesel from Midwest Soybeans used in a Heavy Duty diesel vehicle.

The CA-GREET model calculates the direct impacts from the production and use of biodiesel. Indirect impacts that could result from the diversion of soybean-derived oil to produce biodiesel has also been analyzed using the GTAP model. Complete details of this analysis for indirect effects is published as a companion document with the release of this fuel pathway document and is available on the Low Carbon Fuel Standard website (<u>www.arb.ca.gov\fuels\lcfs.htm</u>). Only the final result from the GTAP analysis has been used here to allow for a total WTW carbon intensity to be presented in this document.

The pathway described here includes soybean farming, soybean transport, biodiesel production, transport and distribution (T&D) and use of biodiesel in an internal combustion engine. The tailpipe emissions from the combustion of biodiesel is assumed to be the same as Ultra Low Sulfur Diesel (ULSD) and is presented as such in this document. Most of the basic inputs, assumptions, and calculation methodology used in this analysis are provided in the soybean to biodiesel (and renewable diesel) technical document from Argonne². The modifications to the CA-GREET include the use of California specific factors (e.g. biodiesel production, vehicle combustion, etc.).

¹ GREET Model: Argonne National Laboratory:

http://www.transportation.anl.gov/modeling_simulation/GREET/index.html

² See technical document published by Argonne regarding soybean biodiesel and renewable diesel: "Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels", H. Huo, et al, March 2008, retrieve from: <u>http://www.transportation.anl.gov/pdfs/AF/467.pdf</u>

Those modifications are detailed in Appendix B. Additional factors that have been modified for California for the use of fuels such as electricity, natural gas, etc. within the state are detailed in companion documents that have been published on the Low Carbon Fuel Standard website³. To summarize, the pathway documented here includes soybean farming and soyoil extraction in the Midwest, followed by transportation of soyoil to California. Soyoil is then transesterified to biodiesel and transported to blending stations for use in an internal combustion vehicle.

Figure 1 below shows the discrete components that form the biodiesel pathway starting from soybean farming, soybean transportation, biodiesel production and distribution to refueling stations, and final use in a transportation vehicle.

Figure 1. Discrete Components of the Midwest Soybean to Biodiesel Pathway.

This document provides detailed calculations, assumptions, inputs and other necessary information to calculate the energy requirements and GHG emissions for the soybean to biodiesel pathway. Table A below provides a summary of the energy use and GHG emissions per MJ of fuel produced. Expanded details are provided in Appendix A. Input values used in calculations are shown in Appendix B. A description of the co-product allocation methodology used in the analysis is provided in Appendix C.

Several general descriptions and clarification of terminology used throughout this document are:

• CA-GREET employs a recursive methodology to calculate energy consumption and emissions. To calculate WTT energy and emissions, the values being calculated are often utilized in the calculation. For example, crude oil is used as a process fuel to recover crude oil. The total crude oil recovery energy consumption includes the

³ See http://www.arb.ca.gov/fuels/lcfs/lcfs.htm

direct crude oil consumption and the energy associated with crude recovery (which is the value being calculated).

- Btu/mmBtu is the energy input necessary in Btu to produce one million Btu of a finished (or intermediate) product. This description is used consistently in GREET for all energy calculations.
- gCO₂e/MJ provides the total greenhouse gas emissions on a CO₂ equivalent basis per unit of energy (MJ) for a given fuel. Methane (CH₄) and nitrous oxide (N₂O) are converted to a CO₂ equivalent basis using IPCC⁴ global warming potential values and included in the total.
- CA-GREET assumes that VOC and CO are converted to CO₂ in the atmosphere and includes these pollutants in the total CO₂ value using ratios of the appropriate molecular weights.
- Process Efficiency for any step in GREET is defined as: Efficiency = energy output / (energy output + energy consumed)
- Note that rounding of values has not been performed in several tables in this document. This is to allow stakeholders executing runs with the GREET model to compare actual output values from the CA-modified model with values in this document.

⁴ IPCC: Intergovernmental Panel on Climate Change a scientific intergovernmental body tasked to evaluate the risk of climate change caused by human activity established by United Nations in 1988. In 2007, the IPCC values for GHG equivalence (gCO_2e/MJ) are: $CH_4 = 25$, $N_2O = 298$, $CO_2 = 1$. For others GHG, GREET calculates molecular weight of carbon to obtain the GHG equivalence (gCO_2e/MJ): VOC = 0.85/0.27 = 3.12 and CO = 0.43/.273 = 1.57

	Energy Required (Btu/mmBtu)	Share of Total Energy (%)	GHG Emissions (gCO ₂ e/MJ)	Share of Total Emissions (%)
Well-to-Tank (WTT)				
Soybean Farming	28,625	2.20%	2.17	10.21%
Agricultural Chemicals Production	21,456	1.65%	1.59	7.48%
N ₂ O Emissions from Fertilizer Use	N/A	N/A	1.66	7.81%
Soybean Transport	6,805	0.52%	0.53	2.49%
Soyoil Extraction	57,054	4.38%	3.83	18.02%
Soyoil Transport	17,734	1.36%	1.37	6.45%
Biodiesel Transesterification	159,684	12.27%	4.89	23.01%
Biodiesel Transport & Dist.	10,055	0.77%	0.76	3.58%
Total WTT	301,413	23.16%	16.80	79.06%
Tank -to- Wheel (TTW)				
Carbon in Fuel	1,000,000	76.84%	N/A	N/A
Fossil Carbon in Fuel	N/A	N/A	3.67	17.27%
Vehicle CH ₄ and N ₂ O	N/A	N/A	0.78	3.67%
Total TTW	1,000,000	76.84%	4.45	20.94%
Total Well-to-Wheel (WTW)	1,301,413	100%	21.25	100%

Table A. Summary of Energy Consumption and GHG Emissions from a WTW Analysis of Biodiesel Produced from Midwest Soybeans

From Table A above, a WTW analysis of biodiesel indicates that **1,301,413** Btu of energy is required to produce 1 (one) mmBtu of available fuel energy delivered to the vehicle. From a GHG perspective, **21.25** gCO₂e of direct contributions GHG are released during the production of 1 (one) MJ of biodiesel. For indirect land use change, staff estimates **62** gCO₂e/MJ at this time based on GTAP analysis. The total carbon intensity for soybean derived biodiesel derived from soybeans is **83.25** gCO₂e/MJ⁵.

The values in Table A are pictorially represented in Figure 2, showing specific contributions of each of the discrete components of the fuel pathway. The charts are shown separately for energy use and GHG emissions. From an energy use viewpoint, carbon in fuel (76.84%) dominates the pathway energy use. For GHG emissions, the largest contributions are from soybean production (includes soybean farming, use of

⁵ Details of the Land Use Change analysis including information about GTAP is available in Chapter 4 of the LCFS staff report. Specific analysis for this feedstock is available as a December 2009 update on the LCFS website.

agricultural chemicals and consequent N_2O release) (25.50%), BD transesterification (23.01%), and soyoil extraction (18.02%).

Note: Some intermediate values in the Tables in this document have been rounded to appropriate significant figures. Due to this rounding, the final values presented at the bottom of each table may not be exactly reproducible utilizing the values reported in upper sections of tables in this document. The CA-GREET model, however, does account for all relevant digits for each value (or parameter) in calculating emissions for all steps of the pathway and provides an accurate calculation for each step and for the complete pathway.

GHG Emissions Allocation for the Soybean Biodiesel Pathway

Figure 2. Percent Energy Contribution and GHG Emissions Contributions from a Wellto-Wheel (WTW) Analysis of the Soybean to Biodiesel Pathway The following sections provide a summary of all the components that form part of the biodiesel pathway. Complete details are provided in Appendix A.

WTT Details

Soybean Farming

The biodiesel production process starts with soybean farming. Table B provides a breakdown of energy use needed for soybean farming. Complete details are provided in Appendix A. Input values used in the analysis are presented in Appendix B. Appendix C provides the details of allocation factors for the biodiesel pathway. In a similar manner, GHG emissions associated with soybean farming are shown in Table C below. Complete details are provided in Appendix A.

Fuel Type	Energy Use
Diesel (Btu/bushel)	16,543
Gasoline (Btu/bushel)	4,726
Natural Gas (Btu/bushel)	1,725
LPG (Btu/bushel)	1,875
Electricity (Btu/bushel)	1,696
Total Energy Use (Btu/bushel)	26,564
Total Energy Use (Btu/mmBtu)	150,550
Total Energy Use (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	28,625

Table B. Total Energy Use for Soybean Farming

Table C. Total GHG Emissions from Soybean Farming.

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	2,059
CH ₄ (gCO ₂ e/mmBtu)	3.44
N ₂ O (gCO ₂ e/mmBtu)	0.038
CO (gCO ₂ e/mmBtu)	76.212
VOC (gCO₂e/mmBtu)	4.195
Total GHG Emissions (gCO₂e/mmBtu)	2,290
Total GHG Emissions (with Adjustment and Allocation Factors Applied, gCO ₂ e/MJ)	2.17

Chemical Inputs in Soybean Farming

Table D shows the energy necessary for the production of chemicals used in soybean farming. The agricultural chemicals include fertilizers, herbicides and pesticides. Detailed breakdown of chemical inputs utilized in the calculations is provided in Appendix A.

Inputs	Energy Use
Nitrogen (Btu/bu)	2,805
Phosphate (P ₂ O ₅) (Btu/bu)	2,477
Potash (K ₂ O) (Btu/bu)	2,740
Herbicides (Btu/bu)	11,756
Pesticides (Btu/bu)	134
Total Energy Consumption (Btu/bu)	19,912
Total Energy Consumption (Btu/mmBtu)	112,486
Total Energy Consumption (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	21,456

Table D. Total Energy Consumed for Chemical Inputs in Soybean Farming

Table E provides GHG emissions from chemicals input in soybean farming. Complete details are provided in Appendix A.

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	1,588
CH ₄ (gCO ₂ e/mmBtu)	1.979
N ₂ O (gCO ₂ e/mmBtu)	0.12
CO (gCO ₂ e/mmBtu)	1.56
VOC (gCO ₂ e/mmBtu)	0.645
Total GHG Emissions (with Adjustment and Allocation Factors Applied, gCO ₂ e/MJ)	1.59

Table E. Total GHG Emissions for Chemical Inputs in Soybean Farming

CA-GREET also calculates direct field and downstream N₂O emissions resulting from nitrogen fertilizer input. Agricultural N₂O emissions result from conversion of fixed (natural and anthropogenic) nitrogen in the soil. Fixed nitrogen applied to field crops is either extracted by the crop as a nutrient, absorbed (chemically bound) into organic soil components or entrapped in soil aggregates (chemically unbound). The majority of the chemically bound nitrogen remains stabilized in the organic form in the soil system, while the unbound nitrogen is converted to N₂O, volatilized as nitrate or ammonia, or leached out as nitrate. Field and downstream inputs are significant components of agricultural emissions associated with soybean cultivation. The CA-GREET model includes the impact of agricultural N₂O release and this is summarized in Table F below. Complete details of this are provided in Appendix A.

Table F. Total GHG Emissions from N₂O Release Due to Fertilizer Application

GHG Species	GHG Emissions
GHG Emissions from N ₂ O Release (with Adjustment and Allocation	1 66
Factors Applied, gCO ₂ e/MJ)	1.00

Soybean Transport

In the CA-GREET model, soybeans are transported from the field to stack by medium duty truck and from stack to a soyoil extraction plant in the Midwest by heavy duty truck. Details of the energy use are shown in Table G. Soybean transport generates GHG emissions and they are shown in Table H. Details of all the calculations are provided in Appendix A.

Table G. Total Energy Required for Soybean Transport

Locations	Energy Use
Field to Stack (Btu/bu)	1,535
Stack to Plant (Btu/bu)	4,780
Total Energy Use (Btu/bu)	6,315
Total Energy Use (Btu/mmBtu)	35,791
Total Energy Use (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	6,805

Table H. Total GHG Emissions from Soybean Transport

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	533
CH ₄ (gCO ₂ e/mmBtu)	14.54
N ₂ O (gCO ₂ e/mmBtu)	4.26
CO (gCO ₂ e/mmBtu)	1.5
VOC (gCO ₂ e/mmBtu)	0.73
Total GHG Emissions (gCO₂e/mmBtu)	554.0
Total GHG Emissions(with Adjustment and Allocation	0.52
Factors Applied, gCO ₂ e/MJ)	0.55

Soyoil Extraction

Soyoil is then extracted from the soybeans and the energy use and attendant GHG emissions are shown in Table I and Table J respectively. Details of the calculations are shown in Appendix A.

Table I. Total Energy Use for Soyoil Extraction	I. Total Energy Us	e for Sovoil Extractior
---	--------------------	-------------------------

Fuel Type	Energy Use
NG (Btu/lb)	2,995
Electricity (Btu/lb)	1,460
N-Hexane (Btu/lb)	203
Total Energy Use (Btu/lb)	4,658
Total Energy Use (Btu/mmBtu)	299,958
Total Energy Use (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	57,054

Table J. Total GHG Emissions from Soyoil Extraction

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	3.686
CH_4 (gCO ₂ e/mmBtu)	163.2
N ₂ O (gCO ₂ e/mmBtu)	7.30
CO (gCO ₂ e/mmBtu)	4.02
VOC (gCO ₂ e/mmBtu)	186.99
Total GHG Emissions (gCO ₂ e/mmBtu)	4,048
Total GHG Emissions (with Adjustment and Allocation Factors Applied, gCO ₂ e/MJ)	3.83

Soyoil Transport

The pathway described here considers soyoil extracted in the Midwest and transported by rail to a biodiesel plant in CA. The energy use for transport and associated GHG emissions are shown in Table K and Table L. Details of all the calculations are presented in Appendix A.

Table K. Total Energy Required for Soyoil Transport

Transport (By Rail)	Energy Use
Total Energy for Transport (Btu/mmBtu)	18,653
Total Energy Use (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	17,734

Table L. Total GHG Emissions from Soyoil Transportation

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	1,386
CH ₄ (gCO ₂ e/mmBtu)	1.556
N ₂ O (gCO ₂ e/mmBtu)	0.03
CO (gCO ₂ e/mmBtu)	3.547
VOC (gCO ₂ e/mmBtu)	1.036
Total GHG Emissions (with Adjustment and Allocation Factors Applied, gCO ₂ e/MJ)	1.37

Biodiesel Production via Transesterification

The soyoil is transesterified in plants in California to produce biodiesel. Table M and Table N provide energy use and attendant GHG emissions from transesterification respectively. Details are provided in Appendix A.

Fuel or Chemicals	Energy Use
NG (Btu/lb)	950
Electricity (Btu/lb)	93
Methanol (Btu/lb)	1,354
Sodium Hydroxide (Btu/lb)	42
Sodium Methoxide (Btu/lb)	209
Hydrochloric Acid (Btu/lb)	63
Total Energy Use (Btu/Ib)	2,712
Total Energy Use (Btu/mmBtu)	167,961
Total Energy Use (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	159,684

Table M. Total Energy Use for Biodiesel Transesterification

	Table N.	Total GF	IG Emissions	from Biodiesel	Transesterificatior
--	----------	----------	--------------	----------------	---------------------

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	4,710
CH ₄ (gCO ₂ e/mmBtu)	17.19
N ₂ O (gCO ₂ e/mmBtu)	0.06
CO (gCO ₂ e/mmBtu)	3.65
VOC (gCO ₂ e/mmBtu)	1.77
Total GHG Emissions (with Adjustment and Allocation Factors Applied, gCO ₂ e/MJ)	4.89

Biodiesel Transport and Distribution

Table O and Table P show the respective energy use and GHG emissions from transporting biodiesel in California. Complete details are provided in Appendix A.

	HD Truck from Plant to Bulk Terminal	HD Truck for Distribution
Total Energy Use (Btu/mmBtu)	3,094 6,961	
Total Energy Use (with Adjustment and Allocation Factors Applied, Btu/mmBtu)	10,055	

Table O. Total Energy Use for Biodiesel Transport and Distribution

Table P. Total GHG Emissions from Biodiesel Transport and Distribution

GHG Species	GHG Emissions
CO ₂ (gCO ₂ e/mmBtu)	770
CH ₄ (gCO ₂ e/mmBtu)	0.947
N ₂ O (gCO ₂ e/mmBtu)	0.019
CO (gCO ₂ e/mmBtu)	1.478
VOC (gCO ₂ e/mmBtu)	0.327
Total GHG Emissions (with Adjustment and Allocation Factors Applied, gCO ₂ e/MJ)	0.76

TTW Details

Biodiesel use in a Heavy Duty Vehicle

The biodiesel is then modeled as being used in a heavy duty vehicle in California. The factors used here are the same as that for a heavy duty diesel truck using ULSD. Table Q provides a summary of TTW emissions from the use of BD in a heavy duty vehicle. Complete details of the calculations are shown in Appendix A.

Table Q. Total GHG Emissions from Using Biodiesel in a Heavy Duty Vehicle

GHG	GHG Emissions
CH ₄ and N ₂ O from Vehicle (gCO ₂ e/MJ)	0.78
Fossil Carbon in Biodiesel (gCO ₂ e/MJ)	3.67
Total TTW (gCO₂e/MJ)	4.45

APPENDIX A

SECTION 1. DETAILED ENERGY CONSUMPTION AND GHG EMISSIONS CALCULATIONS OF SOYBEAN FARMING

1.1 Soybean Farming Energy Consumption

The first step in the soybean to biodiesel pathway is farming. There are two main components of the farming step: direct farming and fertilizer/pesticide/herbicide use. Each is discussed in this section.

Rather than assuming a "farming efficiency", the direct farming energy use is specified in terms of Btu/bushel. A GREET 1.8 default value of **22,087**⁶ Btu/bushel has been used in this document. This total energy consumption is split into four different fuel types, resulting in direct energy consumption by fuel as shown in Table 1.01. The analysis assumes the U.S. average region in the CA-GREET model for feedstock production, which consists of U.S. petroleum and U.S. average electricity. Table 1.02 shows the U.S. average electricity mix.

Process Fuel Type	Fuel Shares	Fuel Shares Calculations	Direct Energy Consumption, Btu/bushel
Diesel	64.4%	0.644 * 22,087	14,224
Gasoline	17.8%	0.178 * 22,087	3,931
Natural Gas	7.3%	0.073 * 22,087	1,612
Liquid Petroleum Gas	7.6%	0.076 * 22,087	1,679
Electricity	2.9%	0.029 * 22,087	641
Total Direct Energy Consumption Soybean Farming			22,087

Table 1.01 Direct Energy Consumption for Soybean Farming

Table 1.02 U.S. Average Electricity Mix Used for Feedstock Production

Fuel	U.S. Average
Residual oil	2.7%
Natural Gas	18.9%
Coal	50.7%
Nuclear Power	18.7%
Biomass	1.3%
Others	7.7%
<u> </u>	

Source: Argonne National Laboratory

⁶ Data are from USDA 2007 retrieved from Argonne technical document: "Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels", H. Huo, et al, March 2008, p. 13-14

⁷ Data are retrieved from Argonne technical document: "Fuel Cycle Comparison of Distributed Power Generation Technologies", A. Elgowayni and M. Wang, November 2008, p. 6-7

To convert the total direct energy shown in Table 1.01 from Btu/bushel to Btu/mmBtu, the parameters shown in Table 1.03 are used.

Soybean Yield (Ib/bushel)	Soybean to Soyoil (Ibs soybean/Ib oil)	Soyoil to BD (Ibs oil/Ib BD)	BD Density (g/gal)	BD LHV (Btu/gal)	BD LHV (Btu/lb)
60 ²	5.28^{*}	1.04**	3,361 ²	119,550 ²	16,169

Table 1.03 Biodiesel Pathway Parameters

* 2007 USDA data for soybeans and soyoil⁸

** GREET default (value documented on Argonne GREET website)9

All of the values in Table 1.03 are GREET defaults except for soybean to soy oil use factor (5.28 lb soybean/lb oil compared to the Argonne GREET default of 5.7). This factor has changed to 5.28 to reflect USDA data for the year 2007.

The values provided in Table 1.01 are direct energy consumption per bushel of soybean collected for the farming step. This is not the total energy required however, since CA-GREET accounts for the "upstream" energy associated with each of the fuels utilized to make biodiesel. Upstream energy refers to the process energy necessary to produce the fuel that is utilized in the soybean farming operation. For example, 14,224 Btus of diesel fuel are required to make a bushel of soybean. The total energy associated with the 14,224 Btu of diesel fuel includes the energy to recover the crude and refine it to diesel fuel (or Well-to-Tank energy). Specific details of the calculations are shown in Table 1.05 using factors shown in Table 1.04.

 ⁸ Retrieved from USDA website November 2009: <u>http://www.fas.usda.gov/psdonline/psdquery</u>
 ⁹ See Argonne website for GREET documentations: http://www.transportation.anl.gov/modeling_simulation/GREET/pdfs/greet_publications.pdf

	E:WTT energy (Btu input/Btu product)	S: Specific Energy (Btu input/Btu product)
Crude	E _{CR} = 28,284	$S_{CR} = 1 + E_{CR} / 10^6$
	$E_{C} = E_{CR}^{*}Loss Factor_{T&D} + E_{C}$ $_{T&D} + E_{CS} = 28,284^{*}1 + 10,926 = 39,212$	
Residual Oil	E _{ResOil} = 74,239	$S_{\text{Res Oil}} = 1+(E_{\text{C}}^{*}\text{Loss Factor})$ $C_{\text{rude}} + E_{\text{ResOil}} / 10^{6}$
Conventional Diesel	E _{diesel} = 123,805	$S_{diesel} = 1+(E_{C}*Loss Factor)$ diesel+E diesel/ 10^{6}
Conventional Gasoline	E _{gasoline} = 162,914	$S_{\text{gasoline}} = 1 + (E_{\text{C}} \times \text{Loss Factor})$ gasoline + $E_{\text{gasoline}} / 10^{6}$
NG	$E_{NG}=(E_{NG Rec} + E_{NG Procss}) *Loss$ Factor NG + E _{T&D} = 69,596	$S_{NG} = 1 + E_{NG} / 10^6$
NG Recovery	E _{NG Rec} = 31,148	
NG Processing	E _{NG Procss} = 31,854	
NG T&D	$E_{NG T\&D} = 6,498$	
LPG	E _{LPG} = 75,862	$S_{LPG} = 1 + E_{LPG}/10^6$
Coal	E _{coal} = 17,353	S _{coal} = $1 + E_{coal} / 10^6$
Uranium	E _{uranium} = 1,241,307	S _{uranium} = 1+E _{uranium} /(6.926*1000*3412)
Electricity		S _{Electricity} = (E _{efeedstock} +E _{efuel})/ 10 ⁶
as Feedstock	E _{efeedstock} = 85,708	
as Fuel	E _{efuel} = 2,561,534	
Still Gas	E _C = 39,212	$S_{\rm C} = (1 + E_{\rm C})/10^6$

Table 1.04 Energy Consumption in the WTT Process and Specific Energy of Fuels Used in the Soybean to Biodiesel Pathway

Note: Loss Factors are as follows: Crude: 1.0; Diesel: 1.000044; Gasoline: 1.0008 ;NG: 1.0008; LPG: 1.0001. E_{CR} is the energy used for crude recovery, E_{C} represents energy use for crude processing.

Fuel Type	Formula	Description	Total Btu/bu		
		14,224 Btu of direct conventional diesel used per bushel soybean. (Table 1.01)			
Diesel	14,224 + 14,224 * (39,212 *	energy to recover crude is 39,212 ¹ Btu/Btu crude (Table 1.04)			
	1.0000 + 123,805)/ 10 ⁶	⁶ Conventional diesel fuel loss factor is 1.0000 (Table 1.04)			
		Energy to produce conventional diesel 123,805 Btu/Btu (Table 1.04)			
		3,931 Btu of direct conventional gasoline used per bushel soybean (Table 1.01)			
Gasoline	3,931 + 3,931 * (39,212 * 1.0008 + 162,914)/ 10 ⁶	Conventional gasoline fuel loss factor is 1.0008 (Table 1.04)	4,726		
		Energy to produce gasoline 162,914 Btu/Btu (Table 1.04)			
Natural	1,612 * (1 + 69 596/ 10 ⁶) 1,612 Btu/bu of direct NG use (Table 1.01)				
Gas	1,012 (1+09,390/10)	Energy to produce NG 69,596 Btu/Btu (Table 1.04)	1,725		
		1,679 Btu/bu of direct LPG use (Table 1.01)			
		1.0001 is the petroleum LPG loss factor.			
	1,679 * [0.40 * (1+ (39,212* 1.0001 + 75,862)/ 10 ⁶) + 0.60 * ((1+ (69,596* 1.0001 + 48,896)/10 ⁶)]	energy to recover crude is 39,212 ¹ Btu/Btu crude (Table 1.04)	1,875		
LPG		Energy to produce LPG from crude 75,862 Btu/Btu (Table 1.04)			
		Energy to produce NG is 69,596 Btu/Btu (Table 1.04)			
		Energy to produce LPG from NG is 48,896 Btu/Btu (CA-GREET default)			
		40% of the LPG is from petroleum, 60% is from NG (CA-GREET default) and is calculated from above			
		641 Btu/bu of direct electricity used (Table 1.01)			
Electricity	641 (85,708 + 2,561,534)/ 10 ⁶	85,708 Btu of energy used to recover and transport sufficient feedstock to generate 1 mmBtu electricity (Table 1.04)	1,696		
		2,561,534 Btu used as fuel to produce 1 mmBtu electricity (Table 1.04)			
Total energy for soybean farming, Btu/bushel					
Total energy 1.04 lbs oil/lb	for soybean farming, Btu/mmE b BD/16,149 Btu/lb BD x 10 ⁶	8tu = 26,564/60 lbs/bu x 5.28 lbs oil/lb soybean x	150,550		
Total adjust	ed energy for soybean farmi	ng, Btu/mmBtu = 150,550 * 20.0% x 95.1% x 1.000039	28,625		

Note: Well-to-Tank energies for fuels (crude, NG, LPG, etc.) are extracted from the relevant fuel tab in CA-GREET at the bottom in the summary section.

Conversion from Btu/bushel to Btu/mmBtu:

 $\frac{26,564Btu/bu \times 5.28lbsSB/lbsOil}{60lbsSB/bu} \times \frac{1.04lbsOil/lbBD}{16,149Btu/lbBD} \times 10^{6} = 150,550 \text{ Btu/mmBtu}$

Adjust energy with credit to glycerin and oil mass share:

 $150.550Btu / mmBtu \times 20\% \times 95.1\% \times 1.000039 =$ **28,625 Btu/mmBtu**

where:

- a) 5.28 lbs of soybean/lb soyoil, 60 lbs/bu, 1.04 lbs oil/lb BD, and 16,149 Btu/lb BD are from table 1.03
- b) The oil mass share (20.0%) of total oil extraction energy system (including oil and soybean meal, see Appendix C for complete details)
- c) the biodiesel energy share (95.1%) of the overall transesterification system (including biodiesel and glycerin, see Appendix C for complete details)
- d) 1.000039 is loss factor is GREET calculations and is detailed below.

The loss factor is calculated as shown below:

$$1 + \frac{0.207 \text{ g VOC/mmBtu BD} + 0.880 \text{ g VOC/mmBtu BD}}{\left\lceil (3,361 \text{ g BD/gal})/(119,550 \text{ Btu BD/gal})^* 10^6 \right\rceil} = 1.000039$$

The analysis here uses the mass-based allocation to determine a soybean meal credit and energy allocation to calculate the glycerin credit. The analysis allocates 20.0% of the farming, soybean transport and oil extraction energy and emissions to biodiesel and the balance to soybean meal. The feedstock production and oil transesterification results are allocated based on energy-allocation factors for biodiesel and glycerin. The analysis here uses an energy allocation factor of 95.1% and details of this calculation is provided in Appendix C.

The calculations in Table 1.04 above (and other Tables in this document) utilize Well-to-Tank energy results for all fuels used in the various steps of the biodiesel pathway. For example, in Tables 1.04 and 1.05 the diesel calculation uses the crude recovery WTT energy (39,212 Btu/Btu) and diesel production WTT energy (123,805 Btu/Btu); The LPG calculation uses WTT values (39,212 and 75,862 Btu/Btu) for LPG produced from petroleum and the WTT values (69,596 and 48,896 Btu/Btu) for LPG produced from NG. These values are extracted from the summary section of each individual fuel tab in the CA-GREET model. As with the WTT energy values, the emission tables in the following sections use the WTT emissions values, extracted from CA-GREET in the same manner.

1.2 GHG Emissions from Soybean Farming

GHG emissions are calculated in two steps: direct emissions and upstream emissions. The direct emissions are simply the direct fuel consumption multiplied by the appropriate emission factor. Upstream emissions are the emissions associated with recovery, processing and transport of the fuel. Table 1.06 provides the equipment shares for each fuel type consumed and the corresponding emission factors.

	Equipment Type	Equipment Shares	VOC	СО	CH₄	N ₂ O	CO ₂
				g/mml	Btu (LHV)		
Diesel	Tractor	80%	107.689	402.578	9.717	0.920	77,204
Diesel	Engine	20%	83.407	362.100	7.526	2.000	77,349
Gasoline	Tractor	100%	532.974	16,291.863	29.974	1.104	49,494
Natural Gas	Reciprocating Engine	100%	41.120	342.445	368.940	1.500	56,551
LPG	Boiler	100%	1.890	10.800	1.080	4.860	68,036

 Table 1.06 Emission Factors for Fuel Combustion

Source: GREET default emission factors

Direct emissions are calculated by multiplying the direct fuel consumption (provided in Table 1.01) by the above emission factors and summing the equipment types per fuel as shown in Table 1.07.

Process Fuel	VOC g/bushel	CO g/bushel	CH ₄ g/bushel	N₂O g/bushel	CO₂ g/bushel
Diesel	1.463	5.611	0.132	0.016	1,099
Gasoline	2.095	64.051	0.118	0.004	195
Natural Gas	0.066	0.552	0.595	0.002	91
LPG	0.003	0.018	0.002	0.008	114
Total Direct	3.628	70.233	0.846	0.031	1,499

Table 1.07 Direct Emissions from Soybean Farming

In addition to the direct farming emissions, the emissions associated with recovery, processing and transport of the direct fuel used must be included. The calculation methodology for quantifying the upstream emissions for CO_2 are provided in Table 1.09, with CO_2 emission factors for each fuel producing process shown in Table 1.08. Upstream emissions for all pollutants are summarized in Table 1.10.

	EF:WTT CO ₂ Emission Factor (g CO ₂ /mmBtu fuel output)	SE: Specific Emission (g CO ₂ /mmBtu fuel output)
Crude	EF _{CR} = 2,961	$SE_{CR} = 1 + EF_{CR} / 10^6$
	$EF_{C} = EF_{CR}*LF_{T&D} + EF_{C}$ $T_{&D} + EF_{CS} + (VOC, CO)$ conversion) = 3,868	
Residual Oil	EF _{ResOil} = 5,613	$SE_{Res Oil} = 1+(EF_{C}*Loss Factor_{Crude}+$ $EF_{ResOil}) /10^{6}$
Conventional Diesel	EF _{Diesel} = 9,389	$SE_{Diesel} = 1+(EF_{C}*Loss)$ Factor _{Diesel} +EF _{Diesel} / 10 ⁶
Conventional Gasoline	EF _{Gasoline} = 12,124	$SE_{Gasoline} = 1+(EF_{C}*Loss)$ Factor _{Gasoline} +EF _{Gasoline} / 10 ⁶
NG	$ \begin{array}{l} EF_{NG} = (EF_{NG \ Rec} + EF_{NG} \\ _{Procss}) * Loss \ Factor + E_{T&D} \\ + \ EF_{Non-combustion} + (VOC, \\ CO \ conversion) = 5,208 \end{array} $	$SE_{NG} = 1 + EF_{NG}/10^6$
NG Recovery	E _{NG Rec} = 1,717	
NG Processing	E _{NG Procss} = 1,858	
NG T&D	E _{NG T&D} = 352	
NG non- combustion	E _{NG non-combustion} = 1,237	
Coal	EF _{Coal} = 1,411	SE _{Coal} = 1+EF _{Coal} /10 ⁶
Uranium	EF _{Uranium} = 100,325	SE _{Uranium} = 1+EF _{Uranium} /(6.926*1000*3412)
Electricity		$SE_{Electricity} = (EF_{efeedstock} + EF_{efuel})/10^{6}$
as Feedstock	EF _{efeedstock} = 6,833	
as Fuel	EF _{efuel} = 213,458	
Still Gas	EF _C = 3,868	$SE_{C} = 1 + EF_{C}/10^{6}$
LPG	EF _{LPG} = 5,715	$SE_{LPG} = 1 + EF_{LPG}/10^6$

Table 1.08 CO₂ Emission Factors for Fuels Used in Soybean Farming

Note: See Table 1.04 for Loss Factors

 Table 1.09 Calculation of Upstream CO2 Emissions from Direct Farming Energy

 Consumption

Fuel Type	Formula	Description	g/bu	
		14,224 Btu/bu of direct diesel used (Table 1.01)		
Diesel	14,224 * $(3,868 * 1.0000 + g/mmBtu (Table 1.08)$		189	
	9,009/710	Diesel loss factor is 1.0000		
		CO ₂ emissions from producing diesel are 9,389 g/mmBtu		
		3,931 Btu/bu of direct gasoline used (Table 1.01)		
Gasoline	3,931 ^ (3,868 ^ 1.0008 + 12.124) / 10 ⁶	Gasoline loss factor is 1.0008	63	
		CO ₂ emissions to produce gasoline 12,124 g/mmBtu (from Table 1.08)		
Natural		1,612 Btu/bu of direct natural gas used (Table 1.01)	0	
Gas	1,612 5,2087 10	Natural gas recovery CO ₂ emissions are 5,208 g/mmBtu	8	
		The analysis assumes 40% of the LPG comes from petroleum and the other 60% from NG. 1,679 Btu of direct LPG used per bushel of soybeans produced (Table 1.01)	15	
	1,679 * ((3,868 * 1.0001 + 5,715) * 40% + (4,885 * 1.0001 + 3,168) * 60%) / 10 ⁶	The crude recovery CO_2 emissions are 3,868 g/mmBtu		
LPG		CO ₂ emissions to produce LPG from petroleum 5,715 g/mmBtu		
		CO_2 emissions from production of NG for LPG is 4,885		
		LPG to NG loss factor is 1.0001		
		The emissions associated with producing LPG from NG are 3,168 g/mmBtu.		
		641 Btu of electricity consumed per bushel of soybeans produced (Table 1.01)		
Electricity	641 * (6,833 + 213,458) / 10 ⁶	CO ₂ emissions associated with electricity feedstock and transport is 6,833 g/mmBtu (Table 1.08)	141	
		CO_2 emissions associated with electricity as fuel is 213,458 g/mmBtu (Table 1.08)		
Total				

Note: Well-to-Tank CO_2 emissions for fuels (crude, NG, LPG, etc.) are extracted from the relevant fuel tab in CA-GREET at the bottom in the summary section.

Upstream emissions are provided in Table 1.10. Table 1.11 shows the combined direct and upstream emissions in g/bu and converted to g/mmBtu and Table 1.12 presents the summary results with allocation and loss factors applied.

Process	VOC	СО	CH₄	N ₂ O	CO ₂
Fuel	g/bu	g/bu	g/bu	g/bu	g/bu
Diesel	0.117	0.250	1.395	0.002	189
Gasoline	0.107	0.076	0.396	0.001	63
Natural Gas	0.010	0.019	0.208	0.000	8
LPG	0.018	0.026	0.198	0.000	15
Electricity	0.013	0.124	0.176	0.001	141
Total Upstream Emissions	0.265	0.490	2.347	0.004	416

Table 1.10 Summary of Upstream Emissions From Soybean Farming

(g/bu)	VOC	СО	CH₄	N ₂ O	CO ₂
Diesel	1.580	5.862	1.527	0.018	1,287
Gasoline	2.203	64.127	0.514	0.005	257
Natural Gas	0.076	0.571	0.803	0.003	100
LPG	0.021	0.044	0.200	0.008	129
Electricity	0.013	0.124	0.176	0.001	141
Total Emissions	3.893	70.724	3.194	0.035	1,914
(g/mmBtu)	VOC	СО	CH₄	N ₂ O	CO ₂
Diesel	8.954	33.222	8.654	0.102	7,294
Gasoline	12.485	363.429	2.913	0.028	1,457
Natural Gas	0.431	3.236	4.551	0.017	567
LPG	0.120	0.249	1.133	0.047	730
Electricity	0.074	0.703	0.997	0.006	799
Total Emissions	22.064	400.840	18.248	0.200	10,846

Table 1.11 Summary of Total (Direct + Upstream) Emissions from Soybean Farming

Sample calculation of CO₂ value to convert from g/bu to g/mmBtu:

 $\frac{(1,914g/bu) \times (5.28lbsSB/lbOil) \times (1.04lbsOil/lbBD)}{(16,149Btu/lbBD) \times (60lbsSB/bu)} \times 10^{6} = 10,846 \text{ g/mmBtu.}$

Table 1.12Summary of Total (Direct + Upstream) Emissions from Soybean Farmingwith Allocation and Loss Factors Applied

With Allocation and Loss Factors Applied							
	VOC g/mmBtu	CO g/mmBtu	CH ₄ g/mmBtu	N₂O g/mmBtu	CO₂ g/mmBtu	GHG gCO₂e/mm Btu	GHG gCO₂e /MJ
Diesel	1.703	6.317	1.646	0.019	1,387	1,449	1.37
Gasoline	2.374	69.104	0.554	0.005	277	408	0.39
Natural Gas	0.082	0.615	0.865	0.003	108	132	0.12
LPG	0.023	0.047	0.215	0.009	139	147	0.14
Electricity	0.014	0.134	0.190	0.001	152	157	0.15
Total Emissions	4.195	76.217	3.470	0.038	2,062	2,293	2.17

1.3 Energy Calculation from Production of Chemical Inputs in Soybean Farming

The next part of the farming energy use is the energy associated with production and transport of fertilizers, pesticides and herbicides. All assumptions described here are CA-GREET default values. The key assumptions are provided in Table 1.13. Note that for each of the products, direct and total energy are calculated based on assumed process energy efficiency and fuel shares. Energy associated with transportation of each product from plant to field is also calculated. Chemical inputs, including fertilizer, herbicide and insecticide, are input on a g-nutrient/bushel (fertilizer) or g-product/bushel (herbicide and pesticide) basis. Table 1.13 presents the CA-GREET chemical inputs per bushel of soybean, the total energy required to produce the chemical product and the calculated upstream fuel cycle energy required to produce a bushel of soybean using these inputs.

Product	Product Use Rate g/bu	Total Production Energy Btu/g	Total Energy Consumption Btu/bu
Nitrogen*	61.2	45.84	2,805
Phosphate (P ₂ O ₅)	186.1	13.31	2,477
Potash (K ₂ O)	325.5	8.42	2,740
Herbicides	43.02	273.26	11,756
Pesticides	0.43	312.43	134
Total Energy Consu Chemicals Used in	19,912 Btu/bu		
Total Energy Consu Chemicals Used in	112,846 Btu/mmBtu		
Total Adjusted En of Ag. Chemicals	21,456 Btu/mmBtu		

Table 1.13 Energy Associated with Fertilizer/Herbicide/Pesticide Use

Note: Nitrogen split: 70.7% Ammonia, 21.1% Urea, 8.2% Ammonium Nitrate

Calculation to convert from Btu/bu to Btu/mmBtu:

$$\frac{(19,912Btu/bu) \times (5.28lbsSB/lbOil) \times (1.04lbsOil/lbBD)}{(1.04lbsOil/lbBD)} \times 10^{6} = 112,846 \text{ Btu/mmBtu}$$

 $(16,149Btu/lbBD) \times (60lbsSB/bu)$

To calculate adjusted energy:

112,846 Btu/mmBtu x 20.0% x 95.1% x 1.000039 = **21,456 Btu/mmBtu**

1.4 GHG Emissions Calculation from Production and Application of Chemical Inputs in Soybean Farming

It is assumed that soybean farming utilizes five different farming products: nitrogen fertilizers (ammonia, urea and ammonium nitrate), phosphates, potash, herbicides and pesticides. Table 1.14 provides the emissions associated with farm product use in g/bu, g/mmBtu, and g/mmBtu after allocation and loss factors have been applied.

Product	voc	со	CH₄	N ₂ O	CO ₂	GHG gCO ₂ e/MJ
Emissions, g/bu:						
Nitrogen	0.371	0.360	0.128	0.099	146	
Phosphate (P_2O_5)	0.064	0.221	0.262	0.002	183	
Potash (K ₂ O)	0.039	0.208	0.278	0.002	215	
Herbicides	0.123	0.653	1.155	0.007	919	
Pesticides	0.002	0.009	0.013	0.000	10	
Total	0.599	1.451	1.836	0.111	1,474	
Converted to g/mmB	tu:					
Nitrogen*	2.104	2.041	0.723	0.562	830	0.97
Phosphate (P ₂ O ₅)	0.362	1.252	1.487	0.013	1,035	1.02
Potash (K ₂ O)	0.223	1.178	1.575	0.013	1,220	1.20
Herbicides	0.695	3.699	6.547	0.040	5,208	5.11
Pesticides	0.010	0.051	0.075	0.001	58	0.06
Total	3.394	8.221	10.408	0.629	8,351	8.36
With Allocation and L	oss Factors	s Applied, g/ı	mmBtu:			
Total	0.645	1.56	1.979	0.12	1,588	1.59

Table 1.14 GHG Emissions Associated with Fertilizer/Herbicide/Pesticide Use

*Note: Nitrogen split: 70.7% Ammonia, 21.1% Urea, 8.2% Ammonium Nitrate

Calculation to convert from g/bu to g/mmBtu:

 $\frac{(1,474g/bu)\times(5.28lbsSB/lbOil)\times(1.04lbsOil/lbBD)}{(1,474g/bu)\times(5.28lbsSB/lbOil)\times(1.04lbsOil/lbBD)}\times10^{6} = 8,351 \text{ g/mmBtu}.$

 $(16,149Btu/lbBD) \times (60lbsSB/bu)$

To calculate adjusted energy: $8,351g / mmBtu \times 20\% \times 95.1\% \times 1.000039 = 1,588 g/mmBtu$

1.5 Soil N₂O Release Due to Fertilizer Use

CA-GREET also calculates direct field and downstream N₂O emissions resulting from nitrogen fertilizer input. Agricultural N₂O emissions result from conversion of fixed (natural and anthropogenic) nitrogen in the soil. Fixed nitrogen applied to field crops is either extracted by the crop as a nutrient, absorbed (chemically bound) into organic soil components, or entrapped in soil aggregates (chemically unbound). The majority of the chemically bound nitrogen remains stabilized in the organic form in the soil system, while the unbound nitrogen is converted to N₂O, volatilized as nitrate or ammonia, or leached out as nitrate. Field and downstream inputs are significant components of agricultural emissions associated with soybean cultivation. Table 1.15 shows the two main inputs: fertilizer input (g/bu) and percent conversion of N-input to N₂O. GREET assumes 1.3% of fertilizer-N is ultimately converted to N₂O. The calculation also uses the mass ratio of N₂O to N (44/(2*14).

Сгор	Soybeans
Fertilizer N input, g/bu	61.2
N content of above/below ground biomass, g/bu	200.7
Percent N conversion to N in N ₂ O	1.3%
Mass ratio, N ₂ O formed/N ₂ O-N, g/g	1.57 (44/28)
N converted, g/bu	3.47
N ₂ O Emissions, g/bu	5.45
GHG emission, gCO ₂ e/bu	1,624
GHG emissions, gCO2e/mmBtu	9,210
GHG emissions, gCO ₂ e/mmBtu, with allocation and loss factors	1,751
GHG emissions, gCO ₂ e/MJ	1.66

Table 1.15 CA-GREET Inputs and Calculated Emissions for Soil N_2O Associated with Soybean Cultivation

Note: Soil N₂O emissions = (61.2 g-N/bu + 200.7 g-N/bu) * (1.3%) * (44 g N₂O/(2x14) g N₂) = 5.45 g-N₂O/bushel

Calculation to convert from g/bu to g/mmBtu:

 $\frac{(1,624g/bu)\times(5.28lbsSB/lbOil)\times(1.04lbsOil/lbBD)}{\times10^6}\times10^6 = 9,210 \text{ gCO}_2\text{e/mmBtu}.$

 $(16,149Btu/lbBD) \times (60lbsSB/bu)$

To calculate adjusted energy:

9,210*g* / *mmBtu* × 20% × 95.1% × 1.000039 = **1,751 gCO₂e/mmBtu**

SECTION 2. SOYBEAN TRANSPORT

2.1 Energy Calculations for Soybean Transport

Soybeans are transported from the field to a soyoil extraction plant in the Midwest. The CA-GREET soybean transport modes are as follows: medium duty diesel trucks transport soybeans to a stack and heavy duty trucks transport the soybeans to a soyoil extraction facility in the Midwest. The soybean meal is used locally as animal feed and the soybean oil is transported by rail to California for biodiesel production. The transport assumptions and calculations are provided in Table 2.01. See the notes below the table for calculations. All values except the rail transport distance are CA-GREET defaults.

	Units	Field to Stack	Stack to Terminal	Total
Mode		Medium Heavy Duty Truck	Heavy Duty Truck	
Distance	Miles	10	40	
Payload	Tons	8	15	
Fuel Economy	Mi/gal	7.3	5	
Fuel		Diesel	Diesel	
Lower Heating Value	Btu/gal	128,450	128,450	
Energy Intensity	Btu/ton-mile	2,199	1,713	
Direct Energy	Btu/ton	43,990	137,013	
Total Energy	Btu/ton	51,160	159,349	
Total Energy	Btu/bu	1,535	4,780	6,315
Total Energy	Btu/mmBtu	8,698	27,093	35,791
Total Adjusted Energy	Btu/mmBtu	1,654	5,151	
Total Soybean T	ransport Adjus	sted Energy,	Btu/mmBtu	6,805

Table 2.01	Transport	Parameters	and Fnerov	Use	Details	for So	vbean	Transport
10010 2.01	rianoport	i ulumotoro	und Energy	000	Dotano	101 00	yncun	ranoport

*Note:

Energy Intensity = LHV / fuel economy / payload

Direct truck energy doubles the miles to take into account round trip energy.

Total energy includes energy associated with crude recovery and diesel refining (see Table 1.3).

To convert from Btu/bu to Btu/mmBtu:

$$\frac{(1535 + 4780)(Btu/bu) \times (5.28lbsOil) \times (1.04lbsOil/lbDB) \times 10^{6}}{(60lbsSB/bu) \times (16,149Btu/lbBD)} = 35,791 \text{ Btu/mmBtu}.$$

To calculate adjusted energy: (35,791 Btu/mmBtu) x (20.0% x 95.1% x 1.000039) = **6,805 Btu/mmBtu**

2.2 GHG Calculations for Soybean Transport

Soybeans are assumed to be transported as follows in CA-GREET:

- 10 miles by medium duty truck from farm to stack
- 40 miles by heavy duty truck from stack to soyoil extraction plant

It is assumed that only diesel is used as a fuel for the trucks used above. Transport emissions are calculated as shown below:

Emissions g/ton soybean = Emission factor (g/mmBtu) * Btu/ton-mile * miles / 10⁶ Btu/mmBtu

The direct emissions are calculated for the trip to the destination and the return trip. The upstream emissions associated with recovering crude and producing diesel are also included. Table 2.02 provides the values used in the calculations. The assumed values for biodiesel density and LHV are 3,361 g/gal and 119,550 Btu/gal, respectively. The sample calculations after the table show the calculations for determining the direct, upstream and total adjusted CO_2 emissions. The WTT values shown in Table 2.03 shows upstream diesel values used to calculate the upstream emissions for diesel truck transport shown in Table 2.02.

	Field to Stack	Stack to Soyoil Extraction Facility	Total Transport	Total Transport (g/bu)
Mode	Medium Duty Truck	Heavy Duty Truck		
Distance, miles	10	40		
Fuel	Diesel	Diesel		
Energy Intensity, Btu/ton-mile	2,199	1,712		
Emission Factors ¹ , g/m different)	mBtu Fuel Burned (re	eturn trip in parenthese	s when	
VOC	32.110 (39.441)	33.671 (26.392)		
со	116.107 (115.084)	178.708 (127.443)		
CH ₄	1.534 (1.933)	1.524		
N ₂ O	2.898	2.105		
CO ₂	77,912 (77,890) ²	77,809 (77,912) ²		
Direct Emissions	(g/ton)	(g/ton)	(g/ton)	(g/bu)
VOC	1.574	4.115	5.688	0.17
СО	5.085	20.973	26.058	0.78
CH ₄	0.076	0.209	0.285	0.01
N ₂ O	0.128	0.288	0.416	0.01
CO ₂	3,427	10,668	14,095	422.85
Upstream Emissions	(g/ton)	(g/ton)	(g/ton)	(g/bu)
VOC	0.363	1.130	1.493	0.14
СО	0.774	2.412	3.186	0.15
CH ₄	4.315	13.439	17.754	13.32
N ₂ O	0.006	0.020	0.027	0.24
CO ₂	583	1,816	2,400	72.0
Total Adjusted Emissio	ns (with Allocation &	Loss Factors)		
VOC (gCO2e/mmBtu)				0.73
CO (gCO2e/mmBtu)				1.5
CH ₄ (gCO ₂ e/mmBtu)				14.54
N ₂ O (gCO ₂ e/mmBtu)				4.26
CO ₂ (gCO ₂ e/mmBtu)				533
Total GHG Emissions (gCO ₂ e/mmBtu)				554
Total GHG Emissions (gCO2e/MJ)				0.53

Table 2.02 Transport Parameters and GHG Emissions from Soybean Transport

Note: ¹Emission factors (EFs) correspond to trip from feedstock origin to destination and the return trip listed in the emission factors (*EF* tab) of CA-GREET. Energy Intensity = LHV/fuel economy/payload ²Direct truck energy doubles the miles to take into account round trip energy.

Sample calculation of CO_2 to convert from g/bu to g/mmBtu:

 $\frac{(422.85+72)(g/bu) \times (5.28lbsSB/lbOil) \times (1.04lbsOil/lbBD)}{(16,149Btu/lbBD) \times (60lbsSB/bu)} \times 10^{6} = 2,804 \text{ gCO}_{2}e/\text{mmBtu}$

To calculate CO₂ adjusted energy: $2,804g / mmBtu \times 20\% \times 95.1\% \times 1.000039 = 533 \text{ gCO}_2\text{e/mmBtu}$

 Table 2.03 Upstream Energy Consumption and Emissions from Diesel Production

GHG	g /mmBtu
VOC	8.247
CO	17.603
CH ₄	98.088
N ₂ O	0.147
CO ₂	13,257

Sample calculations are shown below for CO₂ emissions calculation for a medium heavy duty truck:

Direct CO₂ emissions = [(Diesel origin-to-destination CO₂ EF, g/mmBtu)*(Energy intensity origin-to-destination, Btu/ton-mile) + (Diesel destination-to-origin CO₂ EF, g/mmBtu)*(Energy intensity destination-to-origin)]*(Distance, miles)

Direct CO₂ emissions: $\frac{[(77,912+77,890)gCO_2 / mmBtu] \times (2,199Btu / ton - mile) \times 10miles}{10^6} = 3,427 \text{ gCO}_2/\text{ton}$

Upstream CO₂ emission calculation for a medium duty diesel truck:

Upstream CO₂ emissions = [(Diesel WTT emissions, g/mmBtu)*(Energy intensity originto-destination, Btu/ton-mile) + (Diesel WTT emissions, g/mmBtu)*(Energy intensity destination-to-origin)]*(Distance, miles)

 $\frac{(13,257gCO_2/mmBtu) \times (2,199Btu/ton-mile) \times 2ways \times 10miles}{10^6} = 583 \text{ gCO}_2/\text{ton}$

Total adjusted CO_2 emission calculation in g/mmBtu for a medium duty diesel truck:

 $(3,427 \text{ g CO}_2/\text{ton}) + (583 \text{ g CO}_2/\text{ton}) = 4,010 \text{ g CO}_2/\text{ton}$ $(4,010 \text{ g CO}_2/\text{ton}) \times (1 \text{ ton}/2,000 \text{ lbs}) \times 5.28 \text{ lbs soybeans/lb oil x 1.04 lbs oil/lb}$ BD/16,149 Btu/lb BD x 10⁶ Btu/mmBtu = **682** g/mmBtu

(682 g/mmBtu) x (20.0% oil energy share) x (95.1% biodiesel energy share) x (1.000039) = **130** gCO₂/mmBtu

SECTION 3. SOYOIL EXTRACTION

3.1 Energy Calculations for Soyoil Extraction

Once the soybeans have arrived at a soyoil extraction facility, the oil needs to be extracted from the beans. The U.S. average electricity mix is assumed for soyoil extraction. Since CA-GREET calculates results for feedstock and fuel separately, the CA-GREET model is used to calculate soybean production results (using U.S. average electricity mix) and biodiesel production results (using CA marginal electricity mix) separately. The default Argonne GREET soy oil extraction energy input double counts the natural gas energy required for extraction. To address this inconsistency, a value of 2,800 Btu/lb oil is assumed for NG energy, based on the original GREET NG input (Sheehan, et al. 1998¹⁰). The analysis uses GREET defaults for electricity (551 Btu/lb oil) and hexane (182 Btu/lb oil). Table 3.01 provides the direct energy consumption values based on GREET default total energy consumption and split by fuel type.

Process Fuel Type	Fuel Shares	Relationship of Extraction Energy and Fuel Shares	Direct Energy Consumption, Btu/lb soyoil
Natural gas	79.2%	0.792 x 3,533	2,800
Electricity	15.6%	0.156 x 3,533	551
N-Hexane	5.1%	0.051 x 3,533	182
Direct Energy Co	3,533		

Table 3.01 Direct Energy Consumption for Soyoil Extraction from Soybeans

The values provided in Table 3.01 are direct energy consumption per lb of soyoil extracted. This is not the total energy required, however, since CA-GREET accounts for the "upstream" energy associated with each of the fuels utilized to extract the soyoil. Table 3.02 demonstrates how the direct energy consumption values shown in Table 3.01 are utilized to calculate total energy required to extract soyoil.

¹⁰ Sheehan, J., V. Camobreco, et al. (1998). "Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus." Prepared for U.S. Department of Energy, Office of Fuels Development – Table 78, p.134

Fuel Type	Formula	Description	Btu/lb soyoil	
		2,800 Btu/lb soyoil of direct NG fuel use (Table 3.01)		
Gas	2,800 + 2,800*(69,596)/10 ⁶	69,596 is the energy required to recover, process and transport 1 mmBtu of NG for stationary use	2,995	
		551 Btu/lb soyoil direct electricity use (Table 3.01)		
Electricity	551* (85,708 + 2,561,534)/ 10 ⁶	85,708 Btu of energy used to recover and transport sufficient feedstock to generate 1 mmBtu electricity.	1,460	
		2,561,534 Btu fuel used to produce 1 mmBtu electricity.		
		182 Btu/lb soyoil direct N-Hexane use. GREET uses LPG values for N- Hexane (Table 3.01)		
N-Hexane	182 + 182 * (39,212*1.0001 + 75,862)/ 10 ⁶	The energy to recover crude is 39,212 Btu/mmBtu crude.	203	
		1.0001 is the loss factor for LPG.		
		To refine & transport LPG 75,862 Btu/mmBtu LPG are used (Table 1.3)		
Total Energy Consumption for Soyoil Extraction (Btu/lb oil)				
Total Energ	y Consumption for Soyoil Ext	raction (Btu/mmBtu)	299,958	
Total Adjus	ted Energy Consumption for S	Soyoil Extraction (Btu/mmBtu)	57,054	

 Table 3.02
 Total Energy Use from Direct Energy Use for Soyoil Extraction

The soyoil extraction energy is converted from the per lb soyoil basis to a per mmBtu biodiesel basis as follows:

Soyoil Extraction Energy: $\frac{(4,658Btu/lbOil)\times(1.04lbOil/lbBD)\times(10^{6}Btu/mmBtu)}{16,149Btu/lbBD} = 299,958 Btu/mmBtu$

299,958 Btu/mmBtu x 20.0% x 95.1% x 1.000039 = **57,054 Btu/mmBtu**

3.2 GHG Calculations for Soyoil Extraction

The emissions associated with soyoil extraction are two-fold: the direct combustion emissions and the upstream emissions due to recovery, processing and transport of the process fuels utilized. In soyoil extraction, it is assumed that natural gas, electricity and N-hexane (a petroleum based solvent) are the process fuels. Table 3.03 provides the direct emissions associated with soyoil extraction. These direct emissions are

determined by multiplying the direct energy use (provided in Table 3.01) by the appropriate combustion emission factors for the fuel type and combustion equipment used. Note that electricity has no direct emissions. It is assumed that the natural gas is split equally between a large industrial boiler and a small industrial boiler (CA-GREET default). A sample calculation showing how the natural gas CO_2 direct emissions was calculated is shown below Table 3.03.

Product	VOC	СО	CH₄	N ₂ O	CO ₂
Natural Gas (g/lb Soyoil)	0.006	0.063	0.003	0.001	163
N-Hexane (g/lb Soyoil)	4.813				
Total GHG Emissions (g/lb Soyoil)	4.819	0.063	0.003	0.001	163

Table 3.03 Direct Emissions from Soyoil Extraction

Natural gas direct CO₂ emissions:

 $\frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times [(50\% \times 58,198gCO_2 / mmBtu) + (50\% \times 58,176gCO_2 / mmBtu)]}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil) \times (2,800BtuNG/lbOil)}{10^6} = \frac{(2,800BtuNG/lbOil) \times (2,800Btu$

163 g/lb oil

In addition to direct emissions from fuel combustion, the emissions associated with recovery, processing and transport of the fuels used to extract the soyoil must be quantified. Table 3.04 shows how the upstream CO_2 emissions are quantified from the direct fuel consumption. Table 3.05 provides the upstream emissions for all GHGs.

Fuel Type	Formula	Description	gCO₂/lb soyoil	
		2,800 Btu/lb soyoil of direct NG fuel use (Table 3.01)		
Natural Gas	2,800*(5,208)/10 ⁶	5,208 grams of CO_2 are emitted in recovery, processing and transporting 1 mmBtu of natural gas for stationary use.	15	
		551 Btu/lb soyoil direct electricity use (Table 3.01)		
Electricity	551* (6,833 + 213,458)/ 10 ⁶	To recover, process, and transport fuel to the power plants, 6,833 g of CO_2 /mmBtu are emitted.	121	
		Production of electricity releases 213,458 g CO ₂ /mmBtu of electricity produced.		
		182 Btu/lb soyoil direct N-Hexane use (Table 3.01)		
N-Hexane	182 * (3,868*1.000116	The CO ₂ emitted from crude recovery is 3,868 g/mmBtu.	2	
	+ 5,7 15)/ 10	1.000116 is the loss factor for LPG		
		5,715 g/mmBtu CO ₂ is from LPG refining & transport		
Total Upsti	ream CO ₂ Emissions for	Soyoil Extraction	138	

Table 3.04 Upstream CO₂ Emissions from Direct Energy Use for Soyoil Extraction

Table 3.05 Upstream Emissions from Soyoil Extraction

Product	VOC	СО	CH₄	N ₂ O	CO ₂
Natural Gas (g/lb Soyoil)	0.018	0.032	0.361	0.000	15
Electricity (g/lb Soyoil)	0.011	0.107	0.152	0.001	121
N-Hexane (g/lb Soyoil)	0.002	0.003	0.017	0.000	2
Total GHG Emissions (g/lb Soyoil)	0.030	0.142	0.530	0.001	138

Finally, the direct and upstream emissions are summed and converted from g/lb soyoil basis to g/mmBtu biodiesel basis. The allocation and loss factors are then applied. Table 3.06 provides the total emissions associated with soyoil extraction.

	voc	СО	CH₄	N ₂ O	CO ₂	GHG Emissions
Total Emissions	(Direct + Up	stream), g/l	b soyoil			
Natural Gas	0.023	0.096	0.364	0.001	178	
Electricity	0.011	0.107	0.152	0.001	121	
N-Hexane	4.815	0.003	0.017	0.000	2	
Total	4.849	0.206	0.533	0.002	301	
Total Emissions	(Direct + Up	stream), co	nverted to	g/mmBtu		
Natural Gas	1.481	6.183	23.442	0.064	11,463	
Electricity	0.708	6.891	9.789	0.064	7,793	
N-Hexane	310.094	0.193	1.095	-	129	
Total	312.283	13.267	34.326	0.129	19,385	
Total Adjusted E	Emissions (w	ith Allocati	on and Los	ss Factors)	, g/mmBtu	
Natural Gas	0.282	1.176	4.457	0.012	2,180	
Electricity	0.135	1.310	1.861	0.012	1,482	
N-Hexane	58.962	0.037	0.208	-	24	
						Γ
Total Adjusted E	Emissions in	gCO₂e/mm	Btu	1		gCO₂e/MJ
Natural Gas	0.89	1.87	111.47	3.65	2180.4	2.18
Electricity	0.42	2.09	46.55	3.65	1482.2	1.45
N-Hexane	185.68	0.06	5.21	0.00	24.50	0.20
Total	186.99	4.02	163.2	7.30	3,687	3.83

Table 3.06 Total GHG Emissions from Soyoil Extraction

Sample calculation of CO₂ to convert from g/lb soyoil to g/mmBtu biodiesel:

 $\frac{(301g/lbSoyOil) \times (1.04lbsSoyOil/lbBD)}{(16,149Btu/lbBD)} \times 10^{6} = 19,385 \text{ g/mmBtu}$

To calculate CO₂ with adjusted energy:

19,385*g* / *mmBtu* × 20% × 95.1% × 1.000039 = **3,687 gCO₂e/mmBtu**

SECTION 4. SOYOIL TRANSPORT

4.1 Energy Calculations for Soyoil Transport

As discussed in the previous section, soyoil is produced at a crushing facility in the Midwest and then transported via rail to California for biodiesel production. The rail transport distance (1,400 miles) reflects transport of soyoil to California. For the CA-GREET BD pathway, appropriate modifications have been made to incorporate soybean oil transport to California. Note that the analysis here assumes that soybean oil and biodiesel have the same heating value, which is a reasonable assumption; the error introduced by the difference is small.

The transport parameters and energy use are shown below in Table 4.01. The energy intensity for rail shown in the table is a CA-GREET default value and the following two values, 518,000 Btu/ton, and 16,038 are based on multiplying factors in the table together; the total energy is based on the direct energy and the upstream diesel factor (see Table 4.01).

The energy allocation factor used for soy oil transport is the same energy factor (95.1%) for soy oil calculated in Section 1.1.

	Units	Crushing facility to BD Plant
Mode		Rail
Distance	Miles	1,400
Fuel		Diesel
Lower Heating Value	Btu/gal	119,550
Density	g/gal	3,361
Energy Intensity	Btu/ton-mile	370
*Direct Energy	Btu/ton	518,000
*Direct Energy	Btu/mmBtu	16,038
*Total Energy	Btu/mmBtu	18,653
Total Allocated and Adjusted Energy	Btu/mmBtu	17,734

 Table 4.01
 Parameters and Energy Use for Soyoil Transport

*Note: Rail miles not doubled.

Total energy includes energy associated with crude recovery and diesel refining (see Table 1.3).

Direct Energy (Btu/ton) = $(370 \text{ Btu/ton-mile}) \times (1,400 \text{ miles}) = 518,000 \text{ Btu/ton}$ Direct Energy (Btu/mmBtu) = $(518,000 \text{ Btu/ton}) \times (1 \text{ ton}/2,000 \text{ lbs}) \times (1 \text{ lb}/454 \text{ g}) \times (3,361 \text{ g/gal})/(119,550 \text{ Btu/gal}) \times 10^6 = 16,038 \text{ Btu/mmBtu}$ Total Energy (Btu/mmBtu, not adjusted) = (16,038 Btu/mmBtu) x (1 + 0.163 Btu/Btu diesel upstream) = **18,653 Btu/mmBtu**

Total Energy (Btu/mmBtu, adjusted) = (18,653 Btu/mmBtu x 95.1% x 1.000039) = **17,734 Btu/mmBtu**

where 0.163 Btu/Btu diesel is the upstream energy associated with producing 1 Btu of diesel.

4.2 GHG Calculations for Soyoil Transport

As discussed in the previous section, soyoil is transported 1,400 miles from the Midwest to California. Table 4.02 shows the diesel rail emission factors, direct emissions, upstream emissions and total emissions with allocation and loss factors applied. The direct emissions and upstream emissions are calculated exactly as shown for soybean transport in Section 2.2.

Transport Details	Soybean Crushing Facility to BD Plant
Mode	Rail
Distance, miles	1,400
Fuel	Diesel
Energy Intensity, Btu/ton-	370
mile	570
	Emission Factors, g/mmBtu Fuel Burned
VOC	59.700
CO	215.000
CH ₄	3.940
N ₂ O	2.000
CO ₂	77,664
Di	rect Emissions, g/mmBtu Fuel Transported
VOC	0.957
СО	3.448
CH ₄	0.063
N ₂ O	0.032
CO ₂	1,246
Upst	ream Emissions, g/mmBtu Fuel Transported
VOC	0.132
СО	0.282
CH ₄	1.573
N ₂ O	0.002
CO ₂	213
Total Emissions, including	allocation and loss factors g/mmBtu Fuel Transported
VOC	1.036
СО	3.547
CH ₄	1.556
N ₂ O	0.033
CO ₂	1,386
Total GHG Emissions (gCO ₂ e/MJ)	1.37

Table 4.02 Soybean Oil Transport Parameters and Calculations

Sample calculations of CO₂ emissions from locomotive Direct CO₂ emission from diesel locomotive: $(3,361gBD/gal) \times (77,664)gCO_2 / mmBtu \times (370Btu / ton - mile) \times 1,400miles$

 $(119,550Btu/galBD \times 454g/lb \times 2000lbs/ton)$

1,246gCO₂/mmBtu

Upstream CO₂ emission from diesel locomotive: $\frac{(3,361gRD/gal) \times (13,257gCO_2/mmBtu) \times (370Btu/ton-mile) \times 1400miles}{2} = -$

 $(119,\!550Btu/gal\!\times\!454g/lb\!\times\!2000lbs/ton)$

213 gCO₂/mmBtu

Total CO₂ emissions adjusted to energy: (1,246+213) gCO₂/mmBtu x 95.1% x 1.000039 = **1,386 gCO₂/mmBtu**

Note: Final values shown above were calculated on Microsoft Excel, where contributing factors were not rounding resulting final values are different than the actual calculating operations (Similar calculations for VOC, CO, CH₄, and N₂O.)

SECTION 5. BIODIESEL PRODUCTION

5.1 Energy Calculations for Biodiesel Production

After the soyoil is extracted and transported, biodiesel fuel is produced via the transesterification process. The first step in calculating the total adjusted energy consumption is determining the direct energy use. The direct energy consumption is 2,116 Btu/lb of biodiesel, a CA-GREET default. The process fuel inputs are presented in Table 5.01

Process Fuel Type	Fuel Shares	Relationship of Biodiesel Production and Fuel Shares	Direct Energy Consumption, Btu/lb biodiesel
Natural gas	42.0%	0.420 x 2,116	889
Electricity	2.2%	0.022 x 2,116	47
Methanol	40.9%	0.049 x 2,116	865
Sodium hydroxide	2.0%	0.020 x 2,116	42
Sodium methoxide	9.9%	0.099 x 2,116	209
Hydrochloric acid	3.0%	0.030 x 2,116	63
Direct Energy Cons Transesterification	umption f	or Soybean Oil	2,116

 Table 5.01
 Direct Energy Consumption for Soyoil Transesterification

The values provided in Table 5.01 are direct energy consumption per lb of biodiesel produced. This is not the total energy required however, since GREET accounts for the "upstream" energy associated with each of the fuels utilized to produce the biodiesel. Table 5.02 demonstrates how the direct energy consumption values shown in Table 5.01 are utilized to calculate total energy required for soyoil transesterification.

Fuel Type	Formula	Description	Btu/lb Biodiesel	
		889 Btu/lb biodiesel of direct NG fuel use (Table 5.1).		
Natural gas 889 + 889 * (68,865)/10 ⁶ 68,865 is the energy to recover, process transport a mmBtu stationary use		68,865 is the energy required to recover, process and transport a mmBtu of NG for stationary use	950	
		47 Btu/lb biodiesel direct electricity use (Table 5.1)		
Electricity	47* (111,573 + 1,884,989)/ 10 ⁶	111,573 Btu of energy used to recover and transport feedstock to generate 1 mmBtu electricity.	93	
		1,884,989 Btu fuel used to produce 1 mmBtu electricity.		
	865 + 865 * (31,792 * 1.0002 + 532,954)/ 10 ⁶	865 Btu/lb biodiesel direct methanol use (Table 5.1)		
Methanol		NG recovery, processing and delivery is 31,792 Btu/mmBtu methanol (GREET calculation).	1,354	
		1.0002 methanol loss factor		
		Methanol production is 532,954 Btu/mmBtu methanol produced (GREET calculation).		
Sodium Hydroxide		(GREET default)	42	
Sodium Methoxide		(GREET default)	209	
Hydrochloric Acid		(GREET default)	63	
Total Energy Consumption for Biodiesel Production (Btu/lb)			2,712	
Total Energy	Consumption for Bic	odiesel Production (Btu/mmBtu)	167,961	
Total Adjusted Energy Consumption for Biodiesel Production (Btu/mmBtu)			159,684	

Table 5.02 Total Energy Use from Direct Energy Use for Biodiesel Production

To convert from Btu/lb biodiesel to Btu/mmBtu biodiesel use:

Total Energy: 2,712 Btu/lb biodiesel / 16,149 Btu/lb BD * 10⁶ = **167,961 Btu/mmBtu**

Total Adjusted Energy: 167,961 Btu/mmBtu x 95.1% x 1.000039 = **159,684 Btu/mmBtu**

5.2 GHG Calculations from Biodiesel Production

Once the soyoil has been transported to a biodiesel facility, biodiesel is produced through transesterification. Once again, there are direct emissions resulting from direct fuel consumption and upstream emissions from recovery, processing and transport of these fuels. The fuels consumed in this stage are natural gas, electricity and methanol. As in the soyoil extraction stage, the natural gas is assumed to be split evenly between large and small industrial boilers. The natural gas emission factors are the same as those used for soyoil extraction. The electricity mix is assumed to be California marginal mix.

Direct emissions are calculated by multiplying direct fuel consumption (please refer to Table 3.06 section 3.2 above) by the appropriate emissions factors. Direct emissions for biodiesel production are provided in Table 5.03 (no allocation factors applied). Only natural gas has direct emissions.

Product	VOC	СО	CH₄	N ₂ O	CO ₂
Natural Gas (g/lb Biodiesel)	0.002	0.020	0.001	0.000	52
Total Direct Emissions (g/lb Biodiesel)	0.002	0.020	0.001	0.000	52

Table 5.03 Direct Emissions from Biodiesel Production

Note: Only NG has direct emissions for CA-GREET calculations

The upstream emissions are calculated from the direct energy consumption as illustrated in Table 5.04 for CO_2 . The upstream emissions for each of the pollutants are summarized in Table 5.05. Please refer to Table 5.02 for direct fuel consumption values.

Fuel Type	Formula	Description	gCO ₂ /lb biodiesel
Natural Gas	889 * (5,050)/10 ⁶	889 Btu/lb biodiesel of direct NG fuel use (Table 5.2) 5,050 g of CO_2 are emitted in recovery, processing and transporting 1 mmBtu of natural gas for stationary use	4
Electricity	47* (8,277 + 96,250)/ 10 ⁶	47 Btu/lb biodiesel direct electricity use (Table 5.2) To recover, process and transport fuel to the power plants, 8,277 g of CO ₂ are emitted per mmBtu of electricity produced Electricity production releases 96,250 g CO ₂ /mmBtu of electricity	5
Methanol	865 * (3,229*1.0002 + 18,530)/ 10 ⁶	 865 Btu/lb soyoil direct methanol use (Table 5.2) NG recovery, processing and transport results in 3,229 g CO₂/mmBtu methanol 1.00002 is the loss factor for methanol production Methanol production results in 18,530 g CO₂/mmBtu methanol 	19
Total Upst	tream CO ₂ Emissions fo	r Biodiesel Production	28

Table 5.04 Upstream CO₂ Emissions from Direct Energy Use for Biodiesel Production

Note: As in previous tables, the upstream values shown in the third column of the table are summary WTT values from fuel sheets in CA-GREET.

Product	VOC	СО	CH₄	N ₂ O	CO ₂
Natural Gas (g/lb Biodiesel)	0.006	0.010	0.114	0.000	4
Electricity (g/lb Biodiesel)	0.001	0.003	0.010	0.000	5
Methanol (g/lb Biodiesel)	0.022	0.029	0.166	0.000	19
Total Emissions (g/lb Biodiesel)	0.029	0.042	0.291	0.000	28

Table 5.05 Upstream Emissions from Biodiesel Production

Finally, the direct and upstream emissions are summed and converted from g/lb biodiesel basis to g/mmBtu biodiesel basis. The allocation and loss factors are also applied. Table 5.06 provides the total emissions associated with biodiesel production.

	VOC	СО	CH₄	N ₂ O	CO ₂	GHG Emissions
Total Emission	ns (Direct +	Upstream	, g/lb biodi	esel		
Natural Gas	0.007	0.030	0.115	0.000	56	
Electricity	0.001	0.003	0.010	0.000	5	
Methanol	0.022	0.029	0.166	0.000	19	
Total	0.030	0.062	0.292	0.001	80	
Total Emission	ns (Direct +	Upstream)), converted	d to g/mmB	tu biodiese	el l
Natural Gas	0.433	1.858	7.121	-	3,468	
Electricity	0.062	0.186	0.619	-	310	
Methanol	1.362	1.796	10.279	-	1,177	
Total	1.858	3.839	18.082	0.062	4,954	
Total Adjusted	Emission	s (with Allo	cation & Lo	oss Factors	s), g/mmBtu	I
Natural Gas	0.412	1.766	6.770	-	3,297	
Electricity	0.059	0.177	0.589	-	294	
Methanol	1.295	1.707	9.773	-	1,119	
Total GHG Emissions	1.77	3.65	17.19	0.06	4,710	
Total GHG Emissions (gCO ₂ e/MJ)						4.89

Table 5.06 Total GHG Emissions from Biodiesel Production

Note: To obtain total adjusted energy, multiply by 95.1% and 1.000039 as shown in Table 5.05.

SECTION 6. BIODIESEL TRANSPORT AND DISTRIBUTION

6.1 Energy Calculations for Biodiesel Transport to Retail Stations

The next step in the biodiesel pathway is transport from the production plant to the retail station. Table 6.01 provides the transport assumptions and calculations for this final step.

80% of the Biodiesel is transported by heavy duty truck 50 miles from the plant to bulk terminal; the remaining 20% is distributed directly from the plant. All BD is then transported 90 miles by heavy duty truck from the bulk terminal to refueling stations. The trucking distance input in CA-GREET includes hauling biodiesel to a petroleum terminal for blending followed by distribution to a fueling station as a blended fuel. The energy values are converted from Btu/ton-mile to total energy as follows. The energy and emissions are calculated the same here as for soybean transport and soyoil transport. Btu/ton-mile is converted to Btu/ton, which is converted to Btu/mmBtu fuel for both legs of the trip. Next, the upstream Btu/mmBtu for each mode of transport is calculated the same way as shown in Section 2.2, using the Btu/ton-mile values shown in Table 6.01. Finally, the energy for each mode is multiplied by the mode share shown in Table 6.01 to yield the total energy. No allocation factor adjustment is made for biodiesel transport.

Parameter	Units	Plant to Bulk Terminal	Distribution	Total
Mode	-	Heavy Duty Truck	Heavy Duty Truck	
Shares	%	80%	100%	
Distance	Miles	50	90	
Payload	Tons	25	25	
Fuel Economy	mi/gal	5	5	
Fuel	-	Diesel	Diesel	
Fuel LHV	Btu/gal	128,450	128,450	
Energy Intensity	Btu/ton-mile	1,028	1,028	
Direct Energy (Bt	u/mmBtu) ¹	3,182	5,727	
Upstream Energy (Btu/mmBtu) ¹		686	1,234	
Total Energy (Btu/mmBtu) ¹		3,867	6,961	
Total BD T&D Er (Btu/mmBtu)	nergy ²	3,094	6,961	10,055

Table 6.01 Transport Parameters and Energy Use for Biodiesel Transport and Distribution

¹Return trip energy intensity in parenthesis, if different from trip from origin to destination.

²Apply 80% of the mode shares for BD transport and 100% for BD distribution

Note: Energy Intensity = LHV / fuel economy / payload = 1,028 Btu/mile-ton Direct truck energy doubles the miles to take into account round trip energy.

6.2 GHG Calculations for Biodiesel Transport to Retail Stations

Biodiesel is assumed to be transported as follows in CA-GREET:

- 80% transported 50 miles by heavy duty diesel truck (HDD) from plants in CA to bulk terminal
- 100% distributed 90 miles by heavy duty truck.

Table 6.02 shows the direct emissions, upstream emissions (without accounting for mode share) and total emissions, accounting for mode share.

	Plant to Bulk Terminal	Fuel Distribution	Total Transport
Mode	HDD Truck	HDD Truck	
Mode Share	80%	100%	
Distance, miles	50	90	
Fuel	Diesel	Diesel	
Direct CO ₂ Emission (gCO ₂ /mmBtu)	77,809 (77,912) ²	77,809 (77,912) ²	
Upstream CO ₂ Emission (gCO ₂ /mmBtu)	15,186 ³	15,186	
Energy Intensity, Btu/ton-mile	1,028	1,028	
Direct Emissions	(g/mmBtu)		
VOC	0.096	0.172	
СО	0.487	0.877	
CH ₄	0.005	0.009	
N ₂ O	0.007	0.012	
CO ₂	248	446	
Upstream Emissic	ons (g/mmBtu)		
VOC	0.030	0.054	
CO	0.081	0.146	
CH ₄	0.359	0.647	
N ₂ O	0.001	0.001	
CO ₂	48	87	
Total Emissions ¹ ,	(g/mmBtu)		
VOC	0.101	0.226	0.327
CO	0.455	1.023	1.478
CH ₄	0.291	0.656	0.947
N ₂ O	0.006	0.013	0.019
CO ₂	237	533	770
GHG Emissions (g/mmBtu)	247	556	802
GHG Emissions (gCO₂e/MJ)	0.23	0.53	0.76

Table 6.02 GHG Emissions from Biodiesel Transport and Distribution

¹Includes the mode share.

²Return Trip from destination to origin emissions in parenthesis (GREET calculation, cells AD41 and AD54 of the *EF* tab of the CA-GREET model))

³Upstream Energy of diesel from GREET calculation (cell B184, *T&D* tab of the CA-GREET model)

The emissions shown in Table 6.02 are determined the same way as the soy oil transport is calculated (Table 4.02).

Sample calculation of CO_2 emissions for heavy duty truck distribution (residual oil): Direct Emissions =

 $(3,361g/gal) \times (77,809+77,912)(\underline{gCO2/mmBtu}) \times 1,028(\underline{Btu/ton-mile}) \times 90\underline{miles} = 0$

 $(119,550Btu / gal) \times (454g / lb) \times (2000lb / ton)$

446 g CO₂/mmBtu

Upstream emissions = $\frac{(3,361g/gal) \times (15,186+15,186)(gCO2/mmBtu) \times 1,028(Btu/ton-mile) \times 90miles}{(119,550Btu/gal) \times (454g/lb) \times (2000lb/ton)} =$

87 g CO₂/mmBtu

Total Emissions = 446 g/mmBtu + 87 g/mmBtu = **533 gCO₂/mmBtu** (Similar calculations for VOC, CO, CH₄ and N₂O to get results in table 6.02)

SECTION 7. GHG EMISSIONS FROM A BIODIESEL-FUELED VEHICLE

7.1 Combustion Emissions from Fuel

Vehicle CO₂ (Carbon in Fuel)

The CA-GREET model considers only the fossil carbon in fuel (expressed as fully oxidized, g CO₂/mmBtu fuel), since biologically derived fuel carbon originates from the atmosphere and the net greenhouse gas impact is neutral. The only fossil carbon in biodiesel originates from the methanol (produced from natural gas) used in soybean oil transesterification. The calculations in Table 7.01 show the fossil CO₂ emissions per mmBtu and MJ of fuel. The table summarizes the values used in the calculations and also shows the results from the carbon in fuel calculations. The biodiesel production energy and methanol energy share for production shown in Table 7.01 are CA-GREET default values and the remaining values in the table are fuel properties. The equation is shown at the bottom of Table 7.01.

The total BD processing energy of 2,116 Btu/mmBtu is based on the AB1007 analysis. Esterification requires a methanol input that corresponds to 10% of the biodiesel mass. This methanol energy is input to CA-GREET as fuel shares of 40.9% of the 2,116 Btu of energy input which is equal to 865 Btu/mmBtu.

The GHG emissions are calculated based on the fraction of methanol energy in BD (540 Btu/mmBtu = $2,116 \times 40.9\% / 16,149$ Btu/lb) and the carbon content of methanol (5.4% x 70 = 3.67 g/MJ). 16,149 Btu/lb is the LHV of BD on a per pound basis.

Description	Biodiesel (B100)
BD Production Energy Input (Btu/lb BD)	2,116
BD Lower Heating Value (Btu/gal)	119,550
BD Density (g/gal)	3,361
BD Carbon Ratio (wt%)	77.6 %
MeOH Fuel Production Share	40.9%
MeOH Lower Heating Value (Btu/gal)	57,250
MeOH Density (g/gal)	3,006
MeOH Carbon Ratio (wt%)	37.5%
CO / C Mass Patio (wt%)	44.0095/
CO_2/C Mass Ratio (wt%)	12.011
Fossil Carbon in Fuel (gCO₂e/MJ)	3.67

Table 7.01 GHG Emissions from Fossil Carbon in Biodiesel

Detailed Calculation of Fossil carbon in biodiesel:

Energy share of Methanol production:

 $\frac{(2,116Btu/lbBD) \times (40.9\%) \times (3,361g/gal)}{(2,116Btu/lbBD) \times (40.9\%) \times (3,361g/gal)} = 5.4\% \text{ energy}$

 $(454g/lb) \times (119,550Btu/gal)$

CO₂ in Methanol Production:

 $\frac{(3,006gMeOH / gal) \times (37.5\%) \times (44gCO_2)}{(57,250Btu / gal) \times (12gC) \times (1,055MJ / mmBtu)} \times 10^6 = 68.4 \text{ gCO}_2/\text{MJ} \text{ methanol}$

Fossil Carbon: 5.4% x (68.4 gCO₂/MJ) = 3.67 gCO₂/MJ

Vehicle CH₄ and N₂O emissions

The CH₄ and N₂O emissions are assumed to be the same as ULSD. ULSD emission factors for heavy duty trucks was provided in the ULSD document and are shown in Table 7.02. The vehicle energy use, N₂O and CH₄ emission rates and final emissions are shown in Table 7.02

Parameter	2010 Emissions factor (g/mi)	GWP	GHG (gCO2e/MJ)
N ₂ O	0.048	298	0.735
CH ₄	0.035	25	0.045
Vehicle Energy Efficiency	6.1 mi/gal		0.78

Table 7.02 Vehicle CH_4 and N_2O Emissions

APPENDIX B MIDWEST SOYBEAN FOR BIODIESEL

Scenario: Soybean from Midwest transported to California for Biodiesel Production Pathway - Input Values

Parameters	Units	Values	Note		
GHG Equivalent					
CO ₂		1			
CH ₄		25			
N ₂ O		298			
VOC		3.04			
СО		1.6			
	Soyb	ean Farming			
Direct Farming Efficiency		97.2%			
Fuel Use Shares					
Diesel		64.4%			
Gasoline		17.8%			
Natural Gas		7.3%			
LPG		7.6%			
Electricity		2.9%			
Cultivation Equipment Shares					
Diesel Farming Tractor		80%			
CO ₂ Emission Factor	g/mmBtu	77,411			
Diesel Engine		20%			
CO ₂ Emission Factor	g/mmBtu	77,401			
Gasoline Farming Tractor		100%			
CO ₂ Emission Factor	g/mmBtu	75,645			
Natural Gas Reciprocating Engine		100%			
CO ₂ Emission Factor	g/mmBru	56,551			
LPG Commercial Boiler		100%			
CO ₂ Emission Factor	g/mmBtu	68,036			
Soybean Farming					
Soybean direct energy use	Btu/bu	22,087			
Soybean yield	lbs/bu	60			
Soybean T&D					
Transported from Soybean Field to Stack		4.0			
by medium truck	miles	10	2,199 Btu/mile-ton Energy Intensity		
	mi/gai	7.3	capacity 8 tons/trip		
CO ₂ emission factor origin-destination	g/mmBtu	77,912			
CO ₂ emission factor destination-origin	g/mmBtu	77,890			
Transported from Stack to BD Plant		40	4 742 Div/mile ten Engenny latensity		
by rieavy duty diesel truck	miles	40 F	1,713 Btu/mile-ton Energy Intensity		
Tuer consumption	mi/gai	5 77 01 2	capacity 15 tons/trip		
CO ₂ emission factor doctination origin	g/mmBtu	77,913			
Transported from Terminal to Biodiesel	g/mmbtu	77,809			
Plant					
by rail	miles	1,400	370 Btu/mile-ton Energy Intensity		
CO ₂ emission factor	g/mmBtu	77,664			
Chemicals Inputs					
Nitrogen	g/bu	61.2			
NH3					
Production Efficiency		82.4%			
Shares in Nitrogen Production		70.7%			
CO₂ Emission Factor	g/g	2.475			
Transported from plant to bulk center					

by ocean tanker	miles	3,000	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
Parameters	Units	Values	Note	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2.199 Btu/mile-ton by truck	
Urea				
Production Efficiency		46.7%		
Shares in Nitrogen Production		21.1%		
Transported from plant to bulk center				
by ocean tanker	miles	5,200	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2,199 Btu/mile-ton to and from destination back	
Ammonium Nitrate		250/		
Shares in Nitrogen Broduction		30%		
Transported from plant to bulk center		0.2 /0		
by ocean tanker	miles	3,700	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2,199 Btu/mile-ton to and from destination back	
P ₂ O ₅	g/bu	186.1		
H3PU4	tana			
Transported from plant to bulk center	lons	n/a		
by ocean tanker	miles	4,400	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2,199 Btu/mile-ton to and from destination back	
H ₂ SO ₄	~			
Feedstock input	tons	2.674		
i ransported from plant to bulk center by ocean tanker	miles	1,500	48 Btu/mile-ton to destination and 43 Btu/mile-	
hy rail	miles	750	370 Btu/mile-ton	
by harde	miles	400	403 Btu/mile-ton	
		·		

Parameters	Units	Values	Note	
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination bac	
hy boow duty diosol truck	miloc	30	2 100 Btu/mile top to and from destination back	
P Rock	mies		2,199 Diamie-ton to and nom destination back	
Feedstock input	tons	3 525		
Transported from plant to bulk center	tonio	0.020		
by ocean tanker	miles	4,400	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2,199 Btu/mile-ton to and from destination back	
<u>K₂O</u>	g/bu	571.5		
Transported from plant to bulk center by ocean tanker	miles	3,900	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1,142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2,199 Btu/mile-ton to and from destination back	
Herbicide	g/bu	43.02		
Transported from plant to bulk center				
by ocean tanker	miles	4,000	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile-ton	
by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer				
by heavy duty diesel truck	miles	50	1.142 Btu/mile-ton to and from destination back	
Transported from mixer to farm				
by heavy duty diesel truck	miles	30	2,199 Btu/mile-ton to and from destination back	
Pesticide	g/bu	0.43		
Transported from plant to bulk center				
by ocean tanker	miles	4,000	48 Btu/mile-ton to destination and 43 Btu/mile- ton reverse	
by rail	miles	750	370 Btu/mile_ton	
by fail by barge	miles	400	403 Btu/mile-ton	
Transported from bulk center to mixer	111100			
by heavy duty diesel truck	miles	50	1.142 Btu/mile-ton to and from destination back	
Transported from mixer to farm		<u>~~</u>		
by heavy duty diesel truck	miles	30	2.199 Btu/mile-ton to and from destination back	
Co-Product Credit				
Soy Oil Yield	lb/bu	11.36		
7	lb/lb SB	0.189	or 5.28 lbs soy bean / lbs soy oil	
	lb/lb BD	1.04		

Biodiesel Production				
	Soyo	oil Extraction		
Soyoil Extraction Efficiency		97.2%		
Soyoil Extraction Energy Share		20%		
Energy use	Btu/lb	5,867		
NG used		87.5%		
Large NG Boiler	g/mmBtu	58, 198	50% usage	
Small NG Boiler	g/mmBtu	58,176	50% usage	
Electricity used		9.4%		
N-Hexane used		3.1%		
Soil Oil Transport				
Mileage travel by rail	miles	1,400		
Energy Intensity	Btu/ton- mile	370		
	Soyoil Tr	ansesterificati	on	
Soyoil Transesterification Allocation		95.1%		
Energy use	Btu/lb	2,116		
NG used		42%		
Large NG Boiler	g/mmBtu	58, 198	50% usage	
Small NG Boiler	g/mmBtu	58,176	50% usage	
Electricity used		2.2%		
Methanol used		40.9%		
Sodium Hydroxide used		2%		
Sodium Methoxide		9.9%		
Hydrochloric Acid		3%		
Transportation and Distribution				
Transported by HHD truck	miles	90	1,028 Btu/mile-ton Energy Intensity both ways	
Fuels Properties	LHV (Btu/gal)	Density (g/gal)		
Crude	129.670	3,205		
RO	140.353	3.752	****	
Conventional Diesel	128.450	3.167		
Conventional Gasoline	116.090	2,819		
CaRFG	111.289	2.828		
CARBOB	113.300	2.767		
Natural Gas	83.868	2.651		
EtOH	76.330	2.988	Anhvdrous ethanol (neat)	
EtOH	77.254	2.983	Denatured ethanol	
Still Gas	128,590			
Glycerin	7979 Btu/lb			
Soybean Transportation Cargo Capacity				
Medium Duty Truck	tons	8	-	
Heavy Duty Truck	tons	15		
	Bio	diesel Yield		
From Soybean	gal/bu	1.47		
From Soyoil	gal/lb	0.14		
From Glycerin	lb/lb Glycerin	9.51		

APPENDIX C CO-PRODUCT METHODOLOGY

Co-Product Allocation Methodology for Soyoil Derived Biodiesel

Biodiesel, consisting of fatty-acid methyl esters (FAME), and non-ester renewable diesel (NERD) are produced using plant-derived oils. There are a variety of potential feedstock oils (see table C-1), but the dominant pathway is soybean oil-based biodiesel and this pathway is modeled in CA-GREET and detailed in this document. This Appendix discusses the co-products of soybean biodiesel and the allocation method used in CA-GREET for determining co-product credits; the renewable diesel pathway (NERD) and its co-products are not discussed here.

Fuel	Feedstock	Co-products			
Biodiesel (esterified)	Soybean oil	Soybean meal, glycerin			
Biodiesel (esterified)	Canola Oil	Canola meal, glycerin			
Biodiesel (esterified)	Mustard seed	Seed meal, glycerin			
Biodiesel (esterified)	Palm oil	Various			
Biodiesel (esterified)	Used Cooking Oil	Glycerin			

Table C-1. Biodiesel Co-Products

Pressing oil from soybeans yields protein rich soybean meal valued as an animal feed. Transesterification of the processed oil with methanol yields biodiesel (FAME) and glycerin, which can be sold in crude form, or distilled to 99% or higher purity for sale to the cosmetic and pharmaceutical industries. The CA-GREET model calculates coproduct credits for these and the methodology used in the analysis in this document is provided below.

Co-Product Allocation methods

Allocation methods apportion the inputs and emissions from a process amongst the various co-produced outputs based on some characteristic of the process input, outputs, or operation. The advantage of using the allocation approach is that the analysis can be completed based on the inputs and emissions associated with a more narrowly-defined process. This simplifies the analysis and eliminates certain uncertainties and these have been used in the soybean to biodiesel pathway analysis using CA-GREET. Mass based allocation has been used for the soybean meal/oil production pathway component and energy based allocation has been used for the biodiesel/glycerin production step.

Soybean Production and Soyoil Extraction

The crushing of soybean produces soybean meal and soyoil. USDA data from 2007 indicates that 5.28 bushels of soybeans are required to produce 1 pound of soyoil. The balance is left over as soybean meal, a nutritive supplement for animal feed. Based on the USDA data, approportioning the impacts of soybean farming to soybean meal and

soyoil works out to approximately 80% being allocated to soybeans and 20% to soyoil¹¹. Using this information, all relevant GHG emissions attributable to soybean farming up to soyoil extraction are apportioned to 20% to the biodiesel pathway analysis.

Biodiesel Energy Allocation

The glycerin co-product is accounted for in CA-GREET using allocation by energy content. This is accomplished indirectly, by multiplying the fuel energy and emission results by the energy proportion of the fuel or oil in the product system.

The energy allocation factor is the energy fraction of biodiesel (FAME) to the energy ratio of biodiesel to the total biodiesel plus glycerin product system (Equation C-1 shows the ratio in words and C-2 shows the actual calculation):

Biodiesel Energy Content	(C-1)
(Biodiesel Energy Content + Glycerin Energy Content)	(0-1)

 $\frac{16,149Btu / lbBD}{(16,149Btu / lbBD) + (7,979Btu / lbGlycerine) \times (0.105lbsGlycerine / lbBD)} = 95.1\%$ (C-2)

where BD = biodiesel

Note: The value of 0.105 pounds of glycerin for every pound of biodiesel produced is obtained from the analysis presented below.

Glycerin Yield

The transesterification of plant oils is the primary method used in today's biodiesel plants (Huo, et al. 2008¹²). In this process, plant oils such as soybean oil are combined with methanol in the presence of a catalyst (acid or base) to produce fatty acid methyl esters (FAMEs) and co-product glycerin. The mixture of FAMEs is the biodiesel product. Figure C-1 illustrates this process, in which R in the figure represents the hydrocarbon chain for the fatty acids in the triglycerides comprising the oil. As the figure shows, 1 mole of oil triglycerides reacts with 3 moles of alcohol to yield 3 moles of FAME and 1 mole of glycerol (glycerin) in the transesterification reaction.

The theoretical stoichiometric mass ratio of glycerin to FAME can be determined by the distribution of fatty acids in the oil feedstock. The typical fatty acid profile for soybean oil is shown below in Table C-2, based on data from the Institute of Shortening and

¹¹ Actual data works out to 80.6% to soybean meal and 19.4% to soyoil. To ensure consistency with the GTAP model analysis which utilizes the 80:20 ratio, the same has been adopted for the CA-GREET analysis.

¹² Huo, H., et al. (2008). Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels. Argonne National Laboratory, Energy Systems Division Report ANL/ESD/08-2, March 2008.

Edible Oils¹³. As the table shows, the weighted average molecular weight (MW) for FAME produced from soybean oil is 292.3 g/mol. The MW for glycerin is 92.1 g/mol, indicating a glycerin-to-FAME mass ratio of 0.105, as shown below:

92.1 g/mol glycerin (3 mol FAME/mol glycerin)*(292.3 g/mol FAME) = 0.105 g glycerin/g FAME

Figure C-1. Transesterification of plant oil to biodiesel

This theoretical yield ratio corresponds closely to the yields cited in the JRC/CONCAWE/EUCAR (2008) study¹⁴ (0.106) and Huo, et al.¹² (0.116) for soybeanderived FAME. The actual glycerin yield under real-world operating conditions can be slightly lower than the theoretical yield since feedstock conversion is less than 100%; recovered crude glycerin contains small guantities of unreacted methanol and unwanted products from side reactions. For the analysis here, the 0.105 value has been used.

Fatty acid	Mass Share	Fatty Acid MW (g/mol)	Methyl Ester MW (g/mol)
Linolenic Acid	7.0%	278.4	292.5
Linoleic Acid	54.0%	280.4	294.5
Oleic Acid	24.0%	282.5	296.5
Stearic Acid	4.0%	284.5	298.5
Palmitic Acid	11.0%	256.4	270.5
Weighted Average	100%	278.3	292.3

Table C-2. Distribution of Fatty Acids in Sovbean Oil Triglycerides

¹³ Institute of Shortening and Edible Oils (2006), "Food Fats and Oils," ninth edition, available at http://www.iseo.org/foodfatsoils.pdf ¹⁴ JRC, CONCAWE, EUCAR (2008), "Wells to Wheels Analysis of Future Automotive Fuels and

Powertrains in the European Context," Version 3.0, Appendix 4.